#### Modulated Electron Therapy

Kenneth R. Hogstrom, John A. Antolak, Rajat J. Kudchadker

- The University of Texas M. D. Anderson Cancer Center

#### C.-M. Charlie Ma

- Fox Chase Cancer Center

#### Dennis D. Leavitt

- University of Utah Medical Center

#### Purpose

- The purpose of this presentation is to introduce the clinical medical physicist to the principles of modulated electron therapy.
- This presentation will cover in 30 minutes what was covered for photons in 4 days!
- Therefore, the attendee is referred to the written chapter for greater detail.

#### Definition Electron Conformal Therapy

<u>Electron conformal therapy</u> (ECT) is the use of one or more electron beams for the following purposes:

- (1) containing the PTV in the 90% dose surface
- (2) achieving as homogeneous dose distribution as possible or a prescribed heterogeneous dose distribution to the PTV
- (3) delivering minimal dose to underlying critical structures and normal tissues

#### Definition Modulated Electron Therapy

<u>Modulated electron therapy</u> (MET) is ECT achieved using:

- energy modulation and/or
- intensity modulation

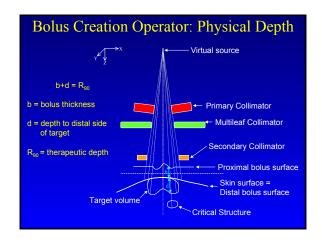
#### Methods for Electron Modulation

- Energy modulation can be achieved through:
  - continuous steps (<0.2 MeV) using bolus
  - discrete steps (1.5-4.0 MeV) using a small number of beams on a current therapy machine
- Intensity modulation can be achieved through:
  - scanned electron beam (limited access)
  - multi-leaf collimator (limited development)
  - multiple field cutouts (simulating MLC, but impractical)

#### Methods for Modulated Electron Therapy

- · Bolus ECT
- Segmented-field ECT
- Intensity-modulated Electron Therapy (IMET)

#### Relevant topics for each scheme are:


- Treatment planning
  - beam planning
  - · dose calculation
- Treatment delivery
- Quality assurance
- Clinical utility

#### **Bolus Electron Conformal Therapy**

- Definition
  - Bolus ECT is the use of a single energy electron beam to deliver a dose distribution that conforms the 90% dose surface to the distal surface of the PTV.
  - Bolus ECT can be with or without intensity modulation.

#### · Treatment Planning

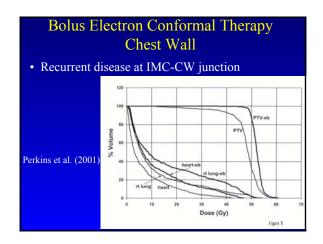
- Design bolus using methods of Low et al. (1992)
- Calculate dose using 3D-implementation of Hogstrom pencil beam algorithm (Starkschall et al. 1991)
- Approved bolus file electronically transferred to bolus manufacturer



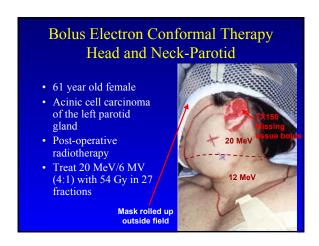
#### Electron bolus design operators

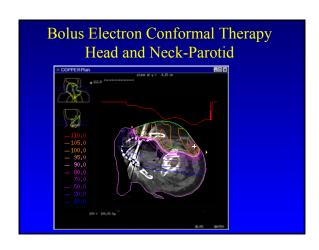
- •Creation- provide the initial estimate of bolus shape
- Modification modify initial bolus shape
- •Extension- extend bolus to regions outside projection target volume and field

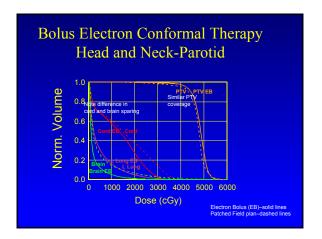
| Operator    | Description                  | Parameters        | Туре         |
|-------------|------------------------------|-------------------|--------------|
| P           | Physical Depth               | $\Delta$ , $R_t$  | Creation     |
| R           | Effective Depth              | $\Delta$ , $R_t$  | Creation     |
| I           | Isodose Shift                | $R_{t}$           | Modification |
| $S_t$       | Gaussian thickness smoothing | η,μ               | Modification |
| $S_h$       | Gaussian height smoothing    | η,μ               | Modification |
| T           | Maximum coverage             | η                 | Modification |
| C           | Critical structure avoidance | η, D <sub>e</sub> | Modification |
| $H_{\rm t}$ | Thickness extension          |                   | Extension    |
| $H_h$       | Height extension             |                   | Extension    |
| О           | Intensity modulation         |                   |              |


Low et al. (1992)

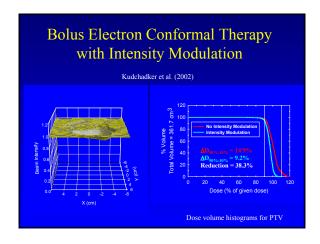

# Bolus Electron Conformal Therapy Treatment Delivery Bolus fabrication using machineable wax (.decimal, Sanford, FL) Conventional electron beam delivery (single energy and irregular field cutout in applicator)


## • Quality Assurance - Factory QA verifies thickness - CT scan and dose calculation with bolus verifies dose distribution Low et al. (1994)


## Bolus Electron Conformal Therapy Clinical Utility Head and neck parotid Post-mastectomy chest wall surgical defect deformed surgical flap recurrent disease at IMC-CW junction Posterior wall sarcoma

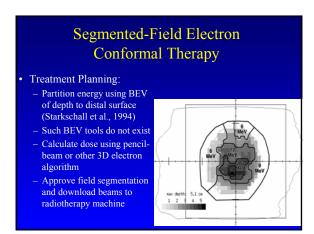

# Bolus Electron Conformal Therapy Chest Wall • Recurrent disease at IMC-CW junction Perkins et al. (2001) There is a disconnected by the second of the sec

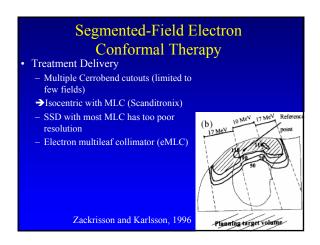


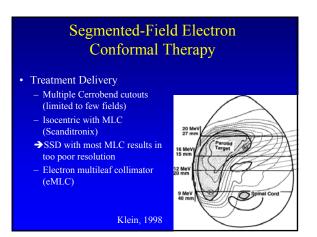










# Bolus Electron Conformal Therapy with Intensity Modulation Kudchadker et al. (2002) 25 MeV 25 MeV 25 MeV 10 to the sport 106.2 Without Intensity Modulation With Intensity Modulation











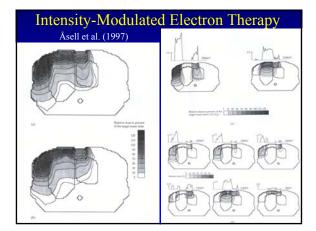
#### Segmented-Field Electron Conformal Therapy

- Treatment Delivery
  - Multiple Cerrobend cutouts (limited to few fields)
  - Isocentric with MLC (Scanditronix)
  - SSD with most MLC has too poor resolution
  - →Electron multileaf collimator (eMLC)

Antolak, Boyd, and Hogstrom, 2002



#### Segmented-Field Electron Conformal Therapy


- Quality Assurance
  - Not specified (similar to current electron therapy)
  - Could be modeled after IMXT
    - Calculate dose plan to cubical, water equivalent phantom in lieu of patient
    - Use film to measure dose in 3 othogonal planes of water equivalent phantom
    - Compare results to calculated dose

#### Segmented-Field Electron Conformal Therapy

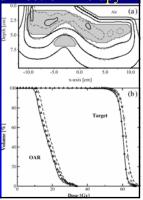
- Cinical Utility
  - Same as for bolus ECT

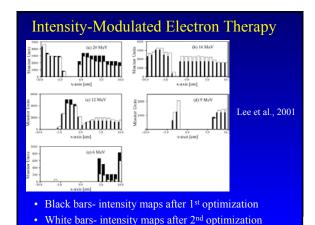
## Intensity-Modulated Electron Therapy

- Definition
  - Intensity-modulated electron therapy (IMET) uses multiple electron beams, each of differing energy and intensity patterns, to deliver a dose distribution that conforms the 90% dose surface to the distal surface of the PTV.
- Pioneers in IMET
  - Hyödymnaa, Gustafsson, and Brahme (1996)
  - Åsell et al. (1997)
  - Ebert and Hoban (1997)
  - Lee, Jiang, and Ma, Ma et al., Lee et al. (2000)



#### **Intensity-Modulated Electron Therapy**

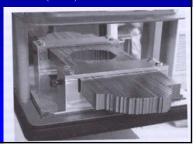

- Treatment Planning (Optimization)
  - Divide electron fields into beamlets.
  - Determine dose distribution for each beamlet, accounting for patient inhomogeneity, but ignoring collimator scatter.
  - Optimize beam weights to objective function.
  - Convert solution to MLC sequences.
  - Calculate dose distribution accounting for collimator scatter
  - Optimize weights for each modulated beam energy


### Intensity-Modulated Electron Therapy

- Treatment Planning (Dose Calculation)
  - Monte Carlo algorithm or other algorithm that is more accurate than conventional PBA recommended for beamlet dose calculations (Ma et al., 2000)
  - Monte Carlo algorithm other algorithm that can account for collimator scatter and bremmstrahlung needed for final dose calculation (Lee et al. 2001)

#### **Intensity-Modulated Electron Therapy**

- Simulated 2D Plan (Lee et al., 2001)
  - 62.5, 50, 30, 10-Gy isodose contours
- Solid Curves
  - Plan ignoring leaf effects in planning
- Dashed Curves
  - Actual resulting plan delivered
- Triangles
  - DVH after second optimization





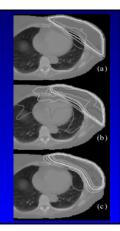

#### Intensity-Modulated Electron Therapy

- Treatment Delivery
- xMLC has too poor resolution for treating at 100-cm SSD
  - →Electron multileaf collimator (eMLC)

Ma et al. 2000



## Intensity-Modulated Electron Therapy


- · Quality Assurance
  - Not specified
  - Could be modeled after IMXT
    - Calculate dose plan to cubical, water equivalent phantom in lieu of patient
    - Use film to measure dose in 3 othogonal planes of water equivalent phantom
    - Compare results to calculated dose

## Intensity-Modulated Electron Therapy

- Cinical Utility
  - Same as for bolus ECT
  - Intact breast

### Intensity-Modulated Electron Therapy

- Ma et al. 2003
- · Isodose values
  - 55, 52.5, 50, 45, 40, 25, 15, 5 Gy
- Comparisons
  - (a) parallel opposed IMXT beams
  - (b) 4- field IMXT
  - (c) 8-field IMET



### Bolus ECT Advantages and Disadvantages

- Advantages
  - + Continuous energy resolution
  - + Single treatment field
    - · Fewer MU: Shorter treatment times and less x-ray leakage
    - · No abutment issues due to dosimetry or patient motion
- Advantage/Disadvantage
- ± Higher skin dose
- Disadvantages
  - Single energy requires greatest energy, resulting in greater R<sub>90-10</sub>
  - Intensity modulation required to achieve optimal dose uniformity due to proximal bolus shape
  - Room entry required between fields

#### Segmented-Field ECT Advantages and Disadvantages

- Advantages
  - + Multiple fields of different energy, resulting in smallest possible  $R_{\rm 90\text{-}10}$
  - + No room entry required if using eMLC to shape fields
- · Advantage/Disadvantage
  - ± Lower skin dose
- Disadvantages
  - Greater MU: Longer treatment times and increased x-ray dose
  - Large energy intervals on linac (e.g. 3-4 MeV) can result in too deep of  $R_{90}$  over-irradiating normal tissue (e.g. lung)
  - Dose inhomogeneity from abutting fields of differing energy
  - Intensity modulation could be required to achieve dose uniformity due to patient heterogeneity

#### Intensity-Modulated Electron Therapy Advantages and Disadvantages

- · Advantages
  - + Well suited for inverse planning
  - + No room entry required if using eMLC to shape and modulate fields
- Advantage/Disadvantage
  - ± Lower skin dose
- Disadvantages
  - Greater MU: Longer treatment times and increased x-ray dose
  - $\ Large\ energy\ intervals\ on\ linac\ (e.g.\ 3-4\ MeV)\ can\ result\ in\ too\ great\ of\ R_{90-10}\ over-irradiating\ normal\ tissue\ (e.g.\ lung)$
  - Patient motion could impact dosimetry of abutted beamlets

#### Conclusions- Clinical Availability

- Bolus ECT
  - Proven useful in clinic
  - Could be widely available if manufacturers included 10-y old bolus design tools in their TPS
- Segmented Field ECT
  - Proven useful in clinic
  - Could become widely available if manufacturers could provide adequate eMLCs
  - Treatment planning could be improved by manufacturers including beam energy partitioning tools in TPS

## Conclusions- Clinical Availability (continued)

- Intensity Modulated Electron Therapy
  - Its potential has been demonstrated on TPS, but not in clinic
  - Availability requires manufacturers to provide
    - dynamic eMLCs on linacs
    - · Monte Carlo method on TPS
    - Optimization and segmentation methods on TPS
  - Clincial implementation also requires development of methods
    - for quality assurance
    - to potenially deal with patient motion

#### **Conclusions- Needed Developments**

- · Linear Accelerators
  - electron MLCs (static and dynamic capability)
  - coincident electron and x-ray source positions
  - maximum energy of 25 MeV
  - closer energy spacing, ~ 1 MeV
- Treatment Planning Systems
  - Tools for ECT planning
  - Monte Carlo dose algorithms
- Quality Assurance Methods
  - IMET methods similar to those in IMXT

## Conclusions Other Potential Applications

- Electron Arc Therapy
  - dynamic MLC for dose uniformity
  - multiple arcs of differing E for improved dose uniformity and conformality
- Mixed Beam Therapy
  - useful for both abutted and combined fields
  - optimized combination of IMXT and IMET will be better than either!