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Abstract

Perturbation of a beam by an obstacle in the beam path is a well-known problem. Monitoring
devices to determine beam parameters or stripping foils to change the charge state of ions are
placed in the beam path and cause energy loss and scattering processes. This note describes
these processes in the framework of covariance matrices, which makes no a priori assumption
of the actual phase space distribution and is applicable to a variety of processes involving
changes in particle position and angle. Exact compact expressions are derived whose series
expansions yield the usual approximate expressions for increase in beam emittance and
change in Twiss parameters. A numerical example is given for the case of scattering and
compared with results derived from a corresponding Monte Carlo calculation.
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1 Introduction

Various effects arising from beam-matter interaction (BMI) can be most conveniently described
in the covariance matrix formalism. These phenomena include effects acting on the angle,
like multiple Coulomb scattering in material (for example in a stripping foil), and directly or
indirectly on the position, like momentum changes in dispersive regions (energy loss in material,
also radiation effects like synchrotron radiation or bremsstrahlung, even if that is not beam-
matter interaction, strictly speaking). All these different effects have one thing in common:
they can be described through probability density functions in the phase plane. The same is
true for the beam itself. The so-called “beam matrix” is just a covariance matrix representing
the distribution of the individual particles in the phase plane. The elements of this covariance
matrix are defined by Cij = 〈ij〉 − 〈i〉〈j〉 where i and j represent the two coordinates. For a
two-dimensional beam matrix they are position and angle. In the following the coordinates will
be denoted by “x” (for position) and “y” (for the angle). The covariance matrix representing
the beam particle distribution can also be expressed in terms of Twiss parameters and beam
emittance:

C =

(
Cxx Cxy

Cyx Cyy

)
=

(
ε0β0 −ε0α0

−ε0α0 ε0γ0

)
. (1)

For Gaussian distributions, the Twiss parameters describe an ellipsoidal shape of the phase
plane boundary. The emittance can be defined from the determinant of this matrix

ε2
RMS

def
= detC = Cxx Cyy − C2

xy (2)

with Cxy = Cyx for symmetry reasons. This can be easily verified with the right hand side of
Eq. (1): det C = ε2

0

(
β0γ0 − α2

0

)
= ε2

0. The definition of the RMS emittance holds true for
any particle distribution.
Beam-matter interaction acts on the particle distribution and therefore on the emittance. From
the above definitions it is clear that a change in beam emittance, meaning in the determinant of
C, will also affect the Twiss parameters which can be derived from Eq. (1) (see also Eq. (8) and
Eq. (16)). Apart from the direct emittance increase due to immediate changes in position and
angle caused by beam-matter interaction, this associated change in Twiss parameters creates an
additional emittance increase from the mismatch between original and new Twiss parameters.
In most cases this contribution is small.
The effect of the beam-matter interaction on the particle distribution can be described by a
convolution of the beam distribution function ρ(~x) with the one representing the distribution
generated by the interaction φ(~y)

ρ′(~z) =

∫
dnx ρ(~x)

∫
dny φ(~y) δn (~z − ~x − ~y) . (3)

It is a general property of covariance matrices that the covariance matrix of the convoluted
distribution C′ (particle distribution after BMI) is given by the sum of the initial beam’s
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covariance matrix C and the covariance matrix of the interaction ∆C: C′ = C + ∆C.
This is shown in detail in Appendix A. In this note the relations for emittance increase and
Twiss parameter change are derived in a simple way for multiple Coulomb scattering and energy
straggling, making use of this convenient property of covariance matrices.

The methods and results presented in this paper were also used in the studies leading to the
proposal of a low-β stripping insertion for lead ions in the PS to SPS transfer line (TT2) [1].

2 Multiple Coulomb Scattering

Multiple Coulomb scattering is treated quite thoroughly in the literature (see for example [2–4]).
It offers, however, a very good possibility to demonstrate the usefulness of the covariance matrix
formalism.
For simplicity reasons we start with the composition of the matrix for a very thin obstacle (e.g. a
stripping foil) where displacements caused by the change in angle are negligible and we need
only consider the change in angle itself. The next step will be a full description for obstacles of
arbitrary lengths. For all these considerations we will suppose that the angle depends only on
the initial energy of the incident particles and no corrections for energy loss need to be made.
In any case it can be shown that the RMS scattering angle remains the same [5].

2.1 Thin Scatterer

For a very thin stripper there is no change in position at the exit of the foil, only a change in
angle has taken place. Therefore the covariance matrix for a thin scatterer can be written as

∆Cthin =

(
∆Cxx ∆Cxy

∆Cyx ∆Cyy

)
=

(
0 0

0 〈θ2〉

)
(4)

where
√
〈θ2〉 is the RMS scattering angle imposed by the process in question. For the multiple

Coulomb scattering this angle is given by [6]

√
〈 θ2〉 = 13.6 z

1

βp

√
x

X0

{
1 + 0.038 ln

x

X0

}
(5)

where X0 is the radiation length of the material, z the charge state, p the total momentum (in
MeV/c), and β the velocity of the incident particle relative to the speed of light. The thickness
of the scattering material is denoted by x. Since the new covariance matrix is given by the sum
of the original one and the covariance matrix of the scatterer, the matrix describing the particle
distribution after scattering at a thin obstacle is

C′ =

(
Cxx Cxy

Cyx Cyy + 〈θ2〉

)
. (6)
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This yields the following exact expression for the emittance:

ε =
√

det C′ =

√
ε2
0 + Cxx〈θ2〉

= ε0

(
1 +

1

2

Cxx

ε2
0

〈θ2〉 + higher order terms
)

.

Replacing the covariance matrix element Cxx by the corresponding representation in beam
parameters (see Eq. (1)), this yields the well-known expression for an emittance increase due to
multiple scattering in first order (see also [2] or [3]):

∆ε ≈ 1

2
β0 〈θ2〉. (7)

The new Twiss parameters can be immediately read off the covariance matrix and are

α =
−C′

xy√
detC′ =

ε0 α0

ε0 + ∆ε

β =
C′

xx√
detC′ =

ε0 β0

ε0 + ∆ε

γ =
C′

yy√
detC′ =

ε0 γ0 + 〈θ2〉
ε0 + ∆ε

(8)

As the expressions of Eq. (7) show the effective change in Twiss parameters is mainly due to
the change in the determinant of the covariance matrix and is therefore closely connected to the
change in emittance.

2.2 Obstacle of Arbitrary Thickness

To find the covariance matrix representing an obstacle of finite length L it is convenient to
divide this length into n slices of length L/n. Since the length is no longer negligible, we will
also have to take into account the displacement X that each particle experiences when traversing
the scattering material. With small changes in angle ∆i for each slice, the displacements at the
“entry” of the next slice are

x1 = ∆0
L

n
at the first slice (x0

!
= 0)

x2 = x1 + (∆0 + ∆1)
L

n
at the second slice

· · ·

so that the total displacement and angle at the exit of the scatterer are represented by

Θ =

n−1∑
i=0

∆i

X =
L

n

n−1∑
i=0

(n − i) ∆i

(9)
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The corresponding covariance matrix for the generated particle distribution at the end of the
scatterer is given by

∆CL =

(
〈X2〉− 〈X〉〈X〉 〈XΘ〉− 〈X〉〈Θ〉
〈ΘX〉− 〈Θ〉〈X〉 〈Θ2〉 − 〈Θ〉〈Θ〉

)

where the off-diagonal elements are identical. All we have to do now is to calculate the
expectation values keeping in mind that 〈∆2

i〉 = 〈Θ2〉/n and 〈Θ2〉 = 〈θ2〉. The expectation
value for the angle is obviously

〈Θ〉 = 〈
n−1∑
i=0

∆i〉 =

n−1∑
i=0

〈∆i〉 = 0. (10)

The same holds for 〈X〉. The expectation value of Θ2 is given by

〈Θ2〉 =

n−1∑
i=0

n−1∑
j=0

〈∆i∆j〉 =

n−1∑
i=0

〈∆2
i〉 = n

〈θ2〉
n

= 〈θ2〉 (11)

where we made use of the fact that only terms i = j contribute, since the ∆i are independent
between slices and therefore zero according to Eq. (10). This is also true for for the expectation
values of ΘX and X2:

〈ΘX〉 =
L

n

n−1∑
i,j=0

(n − i) 〈∆i∆j〉 =
L

n

[
n

n−1∑
i=0

〈∆2
i〉 −

n−1∑
i=0

i 〈∆2
i〉
]

= L 〈θ2〉 −
L 〈θ2〉

n2

n(n + 1)

2
.

In the limit n → ∞, this becomes

〈ΘX〉 =
1

2
L 〈θ2〉. (12)

The expectation value of X2 can be written as

〈X2〉 =
L2

n2

n−1∑
j=0

(n − j)2 〈∆2
j 〉

since only terms with i = j contribute. Using
∑n−1

j=0 j2 → n3/3 for n → ∞ the expectation value
becomes in this limit

〈X2〉 =
L2

n3
〈θ2〉

[
n3 +

n3

3
− 2n

n2

2

]
=

L2

3
〈θ2〉. (13)

The covariance matrix representing an obstacle of arbitrary length L taking into account changes
in angle as well as lateral displacement is finally

∆CL =

(
L2

3 〈θ2〉 L
2〈θ2〉

L
2〈θ2〉 〈θ2〉

)
. (14)
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The emittance increase is obtained from the determinant of the matrix representing the new
distribution C′ = C + ∆C in the same way as for Eq. (7). This procedure yields, in first order
approximation and neglecting terms in 〈θ2〉2, the following expression for the emittance change:

∆ε =
1

2
〈θ2〉

[
β0 + Lα0 +

L2

3
γ0

]
(15)

This shows that the increase in emittance is minimal if the scattering takes place at a waist.
For the Twiss parameters the following equations result:

α =
ε0 α0 − L

2〈θ2〉
ε0 + ∆ε

β =
ε0 β0 + L2

3 〈θ2〉
ε0 + ∆ε

γ =
ε0 γ0 + 〈θ2〉

ε0 + ∆ε

(16)

Since for most practical application in accelerator physics the scatterer thickness is small,
displacements generated by the scattering process can be ignored and Eq. (7) is a good
approximation of the emittance increase. If the length L of the obstacle is not precisely known
and thus there are errors on L and on θ(L), or if the influence of the initial momentum spread
is no longer negligible, uncertainties on emittance and Twiss parameters can be derived easily
by standard error propagation.

2.3 A Numerical Application

To give a numerical example, the expressions derived above were used to calculate the
modification of emittance and Twiss parameters for two different regimes: one with α = 0

and one with α 6= 0 but both cases with an initial emittance of 0.49 µm and for an RMS
scattering angle of θRMS = 0.094 mrad. The case of the upright phase plane ellipse corresponds
to the situation at the proposed stripping insertion in the PS-SPS transfer line [1], and the case
of the tilted ellipse to conditions at the entry of the TT2 line.
The analytical results are compared with Monte Carlo (MC) simulation in Table 1. For the
MC estimation of the parameters, two-dimensional (Gaussian) distributions were generated
(8000 particles) with the half axes of the corresponding phase plane ellipse determined from the
respective Twiss parameters as described in Appendix B. The scattering process was simulated
by folding the angular distribution with the distribution function for the scattering angle. The
statistical uncertainties given in Table 1 for the Monte Carlo parameters were calculated using
standard error propagation where off diagonal terms were taken into account:

σ2(P) =

3∑
i,k=1

∂P

∂c′i

∂P

∂c′k
Λik(C′) (17)
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where P stands for α, β, γ or ε respectively, the c′i represent the elements of the beam’s
covariance matrix after scattering, and the elements Λik(C′) of the error matrix are defined by

Λ(C′) =



〈CxxCxx〉 − 〈Cxx〉〈Cxx〉 〈CxxCxy〉 − 〈Cxx〉〈Cxy〉 〈CxxCyy〉 − 〈Cxx〉〈Cyy〉
〈CxyCxx〉 − 〈Cxy〉〈Cxx〉 〈CxyCxy〉 − 〈Cxy〉〈Cxy〉 〈CxyCyy〉 − 〈Cxy〉〈Cyy〉
〈CyyCxx〉 − 〈Cyy〉〈Cxx〉 〈CyyCxy〉 − 〈Cyy〉〈Cxy〉 〈CyyCyy〉 − 〈Cyy〉〈Cyy〉




in the same convention for x and y as usual (meaning that y represents the angle x′). For
the expectation value 〈CxxCxx〉 the expression

(∑
i x4

i

)
/n2 is used as an estimator. The other

expectation values of covariance element products are calculated accordingly.
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Figure 1: Change of phase plane ellipse due to a scattering process for α = 0 (left) and

α 6= 0 (right). The initial emittance for both cases is identical. The simultaneous change

of emittance and Twiss parameters is clearly visible on the right hand plot. The underlying

parameters were determined from the MC generated distribution.

Analytical and MC results for the modification of Twiss parameters and emittance show a very
good agreement. The change of shape of the phase plane ellipse is shown in Fig. 1. The left
hand plot corresponds to the left part of Table 1 where α = 0, the right hand plot to the
α 6= 0 case. The solid lines represent the parameters determined from the original distribution
before scattering, the dashed lines to the results obtained from the folding of original particle
distribution and scattering matrix. In both plots the change in emittance is clearly visible, and
in the right plot also the change in Twiss parameters is apparent.
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3 Generation of Energy Spread

The generation of additional energy spread is a further case that can be conveniently described
in the covariance matrix formalism. The energy spread can for example be generated by the
energy loss straggling (energy loss distribution) associated with energy loss by ionisation. In
this process each particle loses an individual amount of energy which is distributed around an
average energy loss. In the case of a thick scatterer the distribution is Gaussian, whereas for
thin scatterers the theories of Landau or Vavilov have to be applied (see [8]). Regardless of the
actual distribution, the changes in beam emittance and Twiss parameters are derived in the
following.

The physical position of a particle is described as the sum of the contributions from the betatron
oscillation and the momentum dependent trajectory. In the absence of a magnetic field, a change
in total momentum changes neither physical position nor angle. The betatronic contribution
(on which the calculation of the emittance relies) is therefore modified by an amount equivalent
to the change in momentum dependent contribution. This leads to an immediate change in
calculated beam emittance. The average change in (betatronic) position (“X”) and angle (“X′”)
is of course described by the dispersion and its derivative:

〈X〉 = 〈D δi〉 and 〈X′〉 = 〈D′ δi〉
where δi =

p0 − pi

p0

(18)

and pi, p0 are the momentum of the individual particle after passage of the obstacle and the
average momentum of the incoming beam, respectively. To compose the covariance matrix the
expectation values of X2, XX′ and X′2 have to be calculated:

〈XX〉 = 〈D2δ2
i〉 − 〈Dδi〉2 = D2

(
〈δ2

i〉 − 〈δi〉2
)

〈XX′〉 = DD′
(
〈δ2

i〉− 〈δi〉2
)

〈X′X′〉 = D′2
(
〈δ2

i〉 − 〈δi〉2
)

The corresponding covariance matrix is therefore

∆Cmomentum =
(
〈δ2

i〉 − 〈δi〉2
) (

D2 DD′

DD′ D′2

)
. (19)

Again the particle distribution after the energy loss process is described by the sum of the
initial matrix and the matrix describing the energy loss contribution ∆Cmomentum. Defining
Vδ = 〈δ2

i〉− 〈δi〉2 the new emittance can be written as usual as

ε =
√

det C′ =

√
(ε0β0 + D2Vδ) (ε0γ0 + D′2Vδ) − (DD′Vδ − ε0α0)2

= ε0

√
1 +

1

ε0
[β0D′2 + γ0D2 + 2α0DD′]Vδ.
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The change in emittance in first order is therefore given by the momentum spread and the
dispersion invariant (see also [3] or [9]):

∆ε =
1

2

[
β0D

′2 + γ0D
2 + 2α0DD′

]
Vδ (20)

Since δi = (p0 − pi)/p0 the variance of the momentum distribution can also be written as

Vδ = 〈δ2
i〉− 〈δi〉2 =

1

p2
0

(
〈p2

i〉 − 〈pi〉2
)

=

(
σp

p0

)2

.

The new Twiss parameters are simply

α =
ε0 α0 − DD′ Vδ

ε0 + ∆ε

β =
ε0 β0 + D2 Vδ

ε0 + ∆ε

γ =
ε0 γ0 + D′2 Vδ

ε0 + ∆ε
.

(21)

4 Summary

There are many ways to derive the emittance change due to various kinds of beam-matter
interaction (see for example [2–4, 9, 10]). The particle distribution point-of-view using the
covariance matrix formalism, however, provides a compact method to quantify variations of
emittance and the associated changes in Twiss parameters making no a priori assumption
about the shape of the particle distribution. The corresponding exact expressions for multiple
scattering and energy loss straggling have been derived in this note. Series expansion yields the
usual approximate expressions. Determination of the RMS errors is straightforward from the
calculation of the higher order (up to fourth order) moments of the distribution.
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A Convolution of n-Dimensional Distributions and Covariance

Matrices

If a distribution is obtained from the convolution of two other distributions, its covariance
matrix is given by the sum of the covariance matrices of the input distributions. This is easy to
see for one-dimensional distribution and is commonly known for Gaussians. It is however also
true for any folding of n-dimensional distributions, providing that the variance of the original
distributions exists. Let f = f(x1, x2, . . . , xn) be an arbitrary distribution function depending on
n variables xi which is normalised:

∫
dnx f(~x) = 1 where

∫
dnx =

∫ n∏
i=1

dxi

Define further

Fi(x) =

∫ ∏
k6=i

dxk f(~x) and (22)

Fij(x) =

∫ ∏
k6=i,j

dxk f(~x) so that
∫

dxj Fij(x) = Fi(x) (23)

and
∫

dxi Fi(x) = 1. (24)

The expectation value of xi is

〈xi〉 =

∫
dnx xi f(~x) =

∫
dxi xi Fi(x).

Let g(~y) be a distribution function fulfilling the same conditions as f(~x) and h(~z) represent a
distribution composed of the two:

h(~z) =

∫
dnx f(~x)

∫
dny g(~y) δn (~z − ~x − ~y) (25)

The expectation value of zi is given by the sum of the expectation values of xi and yi. After
integration over all components 6= i this reads

〈zi〉 =

∫
dnz zi h(~z) =

∫
dzi zi

∫
dxi

∫
dyi Fi(x) Gi(y) δ (zi − xi − yi)

=

∫
dxi Fi(x)

∫
dyi Gi(y) (xi + yi)

= 〈xi〉 + 〈yi〉

(26)

The square z2
i has an expectation value of

〈z2
i〉 =

∫
dxi Fi(x)

∫
dyi Gi(y) (xi + yi)

2 = 〈x2
i〉 + 〈y2

i〉 + 2〈xi〉〈yi〉. (27)

11

miriam




The expectation values of the mixed terms are finally (with the abbreviations δi = δ (zi − xi − yi)

and δk = δ (zk − xk − yk) ), after integration over all components 6= i and 6= k

〈zizk〉 =

∫
dzidzk zizk

∫
dxidxk Fik(x)

∫
dyidyk Gik(y) δi δk

=

∫
dxidxk Fik(x)

∫
dyidyk Gik(y) (xi + yi) (xk + yk)

= 〈xixk〉 + 〈xi〉〈yk〉+ 〈xk〉〈yi〉 + 〈yiyk〉

(28)

Putting this together, the variance for the composed distribution reads

〈zizk〉− 〈zi〉〈zk〉 = (〈xixk〉− 〈xi〉〈xk〉) + (〈yiyk〉 − 〈yi〉〈yk〉) (29)

which means that the covariance matrix of the new distribution is given by the sum of the
covariance matrices of the input distributions or

C′
ik(z) = Cik(x) + Cik(y). (30)

A derivation for the two-dimensional case can be found for example in [10].

B Generating Tilted Phase Space Ellipses

A tilted phase space ellipse represents a distribution where the two variables are jointly
distributed. To generate such a distribution using Monte Carlo (MC) the two coordinates
are generated separately as independent distributions in a coordinate system parallel to the half
axes of the ellipse. The pairs of coordinates thus obtained are rotated back to the “laboratory”
system where the ellipse is tilted. The angle ϕ between the two systems is known to be given
by

tan 2ϕ =
2 α

γ − β
. (31)

This expression can be easily derived for example from [6] Eq. (28.37). The use of coordinate
systems, rotation angle and half axes is explained by Fig. 2.
In the following it will be shown how the ellipse’s half axes needed for the MC generation can
be derived from known quantities. In the coordinate system parallel to the half axes the ellipse
is described by the following equation:

1 =
x′2

a2
+

y′2

b2
(32)

The well-known rotation relation(
x

y

)′
=

(
cos ϕ sinϕ

− sinϕ cos ϕ

)(
x

y

)
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xm
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ya

my x’y’
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ϕ

b

Figure 2: Sketch showing the two sets

of coordinate systems. One (x, y) is the

“laboratory” system, the other (x′, y′) the

system parallel to the half axes of the tilted

ellipse. The angle between the two systems

is ϕ. The two half axes of the ellipse a and

b are indicated. Also shown are the extreme

points and the intersections with the axes.

can be used to express Eq. (32) in the laboratory system:

1 = A x2 + 2 B xy + C y2 = f(x, y) (33)

using the definitions

A =
cos2 ϕ

a2
+

sin2 ϕ

b2
, B = cos ϕ sin ϕ

(
1

a2
−

1

b2

)
, C =

cos2 ϕ

b2
+

sin2 ϕ

a2
.

The intersection with the axes xa and ya are given by x2
a = 1/A and y2

a = 1/C . The extreme
points of the ellipse are determined by the conditions ∂

∂xf(x, y) = 0 and ∂
∂yf(x, y) = 0. These

conditions lead to linear dependencies of the coordinates x = −yB/A and y = −xB/C which
after substitution into Eq. (33) yield the maxima in x and y of the ellipse:

x2
m =

C

AC − B2
and y2

m =
A

AC − B2
.

Keeping in mind that the emittance can be expressed as the product of the half axes ε = ab,
the symmetric sum A + C = 1/a2 + 1/b2 can be used to derive a relation for the half axes:

s2
± =

A + C

2
ε2 ±

√(
A + C

2
ε2

)2

− ε2

where s± stands for the major half axis a (with the positive sign in front of the square root)
and for the minor half axis b (with the negative sign in front of the square root) respectively.
Substituting the expressions for A and C and with ε = xmya = xaym, this can be further
simplified to

s2
± =

ε

2

[
(β + γ) ±

√
(β + γ)2 − 4

]
. (34)
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upright ellipse tilted ellipse

analytical Monte Carlo analytical Monte Carlo

before after before after before after before after

α 0.00 0.00 -0.004 ± 0.011 -0.009 ± 0.011 -2.35 -1.91 -2.42 ± 0.03 -1.94 ± 0.02

β / m 4.81 4.61 4.94 ± 0.05 4.72 ± 0.05 28.49 23.15 29.28 ± 0.32 23.64 ± 0.26

γ / m−1 0.208 0.217 0.203 ± 0.002 0.212 ± 0.002 0.230 0.201 0.234 ± 0.003 0.202 ± 0.002

ε / µm 0.49 0.51 0.49 ± 0.01 0.52 ± 0.01 0.49 0.60 0.49 ± 0.01 0.61 ± 0.01

Table 1: The analytical calculations before scattering are based on mad [7] calculations of the Twiss parameters, for the emittance

the input values are given. The effect of scattering has been estimated analytically using the equations given in this paper. The

errors given for the Monte Carlo calculations represent the statistical uncertainties for 8000 data points. All calculations are done

for a scattering angle of θRMS = 0.094 mrad.
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