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Abstract

In free-electron laser injectors the so-called microbunching instability can severely de-
grade the beam quality of electron bunches and therefore negatively impact the perfor-
mance of the free-electron laser. Precise understanding of the microbunching process
is required to develop mitigation strategies that minimize the negative impact of the
instability. In this work, two approaches of investigating the microbunching instability
are presented – one analytical and one numerical. Analytically, a perturbation theory
for the instability is derived which is based on a Fréchet–Taylor expansion of the phase-
space density propagation operators – the so-called Perron–Frobenius operators – with
respect to their dependence on the initial condition of the phase-space density. With
this perturbation theory, important problems regarding the microbunching instability
can be treated, such as the impact of two-color density modulations, multi-stage bunch
compression, and the generation of higher-harmonics due to non-linear effects. Gener-
alized microbunching gain functions for the contributions of the first and higher-order
perturbation terms are derived from this theory, which depend only on normalized beam-
and machine parameters. Numerically, the microbunching instability is simulated using
the semi-Lagrangian code SelaV1D, which was developed during the course of this work.
SelaV1D employs tree-based domain decomposition to represent phase-space densities nu-
merically on a grid. With this, it is possible to efficiently simulate the exotic phase-space
densities prevalent in free-electron laser injectors, which exhibit strong non-linear corre-
lations in the longitudinal phase-space, using the grid-based semi-Lagrangian method.
Both approaches are applied to study the microbunching instability for the FLASH2020+
upgrade project, in particular with respect to the microbunching mitigation potential of
a laser-heater and different bunch compression schemes.





Kurzfassung

In den Injektoren von Freie-Elektronen Lasern kann die sogenannte Microbunchingin-
stabilität die Strahlqualität der Elektronenpakete negativ beeinflussen und damit die
Leistungsfähigkeit des Freie-Elektronen Lasers einschränken. Ein präzises Verständnis
des Microbunchingprozesses ist nötig, um Strategien zu entwickeln, die den negativen
Einfluss der Instabilität reduzieren. In der vorliegenden Arbeit werden zwei Ansätze
ausgearbeitet, um die Microbunchinginstabilität zu untersuchen – ein analytischer und
ein numerischer. Der analytische Ansatz besteht in der Herleitung einer Störungstheorie,
basierend auf der Fréchet–Taylor Entwicklung der Phasenraumdichtepropagationsopera-
toren – den sogenannten Perron–Frobenius Operatoren – im Bezug auf ihre Abhängikeit
von dem Anfangswert der Phasenraumdichte. Mit dieser Störungstheorie können wichtige
Fragestellungen bezüglich der Microbunchinginstabilität bearbeitet werden, wie der Ein-
fluss von zweifarbigen Dichtemodulationen, mehrstufige Kompression des Elektronen-
pakets und die Erzeugung von höheren Harmonischen durch nicht-lineare Effekte. Gen-
eralisierte Microbunchingverstärkungsfunktionen für die Beiträge der ersten und höherer
Störungsordnungen werden aus dieser Theorie hergeleitet, welche nur von normalisierten
Strahl- und Maschinenparametern abhängen. Numerisch wird die Microbunchinginsta-
bilität mit dem semi-Lagrangian Code SelaV1D simuliert, der im Rahmen dieser Arbeit
entwickelt wurde. SelaV1D zerlegt die Simulationsdomäne in eine Baumstruktur, um die
Phasenraumdichte numerisch effizient auf einem Gitter abzubilden. Damit ist es möglich,
die exotischen Phasenraumdichten, welche starke nicht-lineare Korrelationen im longi-
tudinalen Phasenraum aufweisen, wie sie in Freie-Elektronen Lasern häufig vorkommen,
mit der gitterbasierten semi-Lagrangian Methode zu simulieren. Beide Ansätze wer-
den angewandt, um die Microbunchinginstabilität für das FLASH2020+ Projekt zu
simulieren, mit besonderem Augenmerk auf die Möglichkeit, die Microbunchinginsta-
bilität durch Einsatz eines Laserheaters und verschiedener Bunchkompressionsschemata
zu unterdrücken.
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1 Introduction

Free-electron lasers (FELs) are light sources that can generate brilliant, ultra-short pulses
of electro-magnetic radiation with wavelengths ranging from the hard X-ray [1,2] to the
THz spectrum [3]. The conception and first experimental demonstration of an FEL in
1971 [4] marked the starting point of the development of a multitude of accelerator-based
light sources around the world that employ variations of the FEL principle [5–9]. Today,
FELs are among the most valuable tools that drive scientific progress in many areas of
research. X-ray crystallography experiments highly profit from short, yet intense small-
bandwidth X-ray pulses provided by FELs, which allow for single-shot measurements
unattainable with longer, less intense pulses [10]. Ultrafast processes, such as for instance
chemical reactions or charge-transfer processes in molecular systems, can be studied with
ultra-short FEL photon pulses on femtosecond timescales [11–13].

Among the most powerful FEL-based light sources are single-pass high-gain FELs.
Such FELs are driven by a single-pass linear accelerator – the so-called injector – which
is capable of supplying high-quality electron bunches for the subsequent generation of
radiation. The efficiency of the FEL process and the resulting photon-pulse properties
depend crucially on the properties of the electron bunches. Most generally, in order for
an electron bunch to successfully drive the FEL process, it has to have a sufficiently
high transverse and longitudinal charge density, a small enough energy spread, and an
adequately small transverse size. A small transverse electron beam size in the undulator
is not only required to achieve the necessary transverse charge density, but also to ensure
transverse coherence of the radiation [1]. Typically, the required charge densities exceed
what can be produced directly by the electron source – the so-called gun. Here, the lim-
iting factor results from the interaction between the electrons via the electrostatic force,
also known as space-charge forces. If the charge density, and therefore the magnitude of
the space-charge forces, is too high, the beam quality at the end of the low-energy section
is significantly degraded, in particular with respect to the transverse and longitudinal
emittance.

Due to relativistic effects, space-charge forces decrease the higher the central energy of
the bunch is, see Section 4.1. Therefore, space-charge forces affect the particle dynamics
particularly strongly in the gun region, before the particles are accelerated. Following
the gun section, the particles are accelerated in accelerating RF-modules, each consisting
of several coupled RF-cavities. Due to resulting increase of the bunch energy, the space-
charge forces are reduced. It is this circumstance that allows electron bunches with
the required charge density to be produced in the injector. At the gun, the bunch is
generated with an intermediate longitudinal charge density, as to keep the space-charge
driven degradation of the bunch quality within acceptable limits. Only after the bunch
is accelerated to a higher energy, its charge density is increased by compressing the
bunch longitudinally. This way, the relativistic suppression the of space-charge forces
counteracts their increase resulting from the higher charge density, so that the a good
beam quality can be preserved.

In application, longitudinal bunch compression is achieved by the combined effects of
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an accelerating RF-module and a subsequent magnetic chicane. Using the RF-module,
a correlation between the longitudinal position of a particle within the bunch and the
relative deviation of its energy from the central energy of the bunch is generated, which
is referred to as an energy chirp. The path length of a particle traversing a magnetic
chicane depends on the energy of the particle – the higher the particle energy the shorter
the path length. This effect is called longitudinal dispersion. The sign of energy chirp is
chosen so that particles in the back of the bunch have a larger energy than those in the
front. Then, due to the longitudinal dispersion, electrons from both, the front and the
back of the bunch, move towards the center of the bunch, resulting in a compression of
the bunch and consequently in an increase of the charge density.

A magnetic chicane consists of a sequence of dipole magnets that bend the trajectory
of the bunch into a curved path. Due to the deflection of the particles in these magnets,
they emit synchrotron radiation. This has two unfavorable effects on the beam dynamics
in the chicane: Firstly, the stochastic nature of the incoherent synchrotron radiation
(ISR) emission process causes the energy spread of the bunch to increase, in particular
at high energies [14]. Secondly, electrons in the front of the bunch can be affected by the
radiation emitted by the back electrons, causing them to gain or lose energy, or change
their transverse momentum in the bend plane – an effect typically referred to by the
term coherent synchrotron radiation (CSR) [15–17], which depends only weakly on the
central beam energy. Generally, both effects degrade the overall quality of the electron
bunch. The impact of both, ISR and CSR, increases with the deflection angle of the
chicane magnets.

In order to keep ISR and CSR effects at bay, the deflection angle – and consequently
the longitudinal dispersion – of a magnetic chicane cannot be chosen arbitrarily large.
It is therefore impractical to perform the total compression after the bunch was ac-
celerated to its final energy, as either the required deflection angle or the chirp of the
bunch would have to be exceedingly large. Moreover, since the impact of ISR and CSR
increases with the beam energy, it is advisable to limit the beam energy at the mag-
netic chicanes. Therefore, high-gain, single-pass FELs typically implement staged bunch
compression schemes, in which the bunch is compressed not in a single, but multiple
magnetic chicanes. Between the chicanes the beam is successively accelerated. Two to
three of such bunch compression stages are common. This approach allows to compress
the bunch successively to the required final charge density, using magnetic chicanes with
intermediate strengths at intermediate beam energies.

Bunch compression can give rise to a collective instability of the electron bunch,
known as the microbunching instability (MBI) [18–20]. If the longitudinal charge density
of an electron bunch contains inhomogeneities, these will generate a space-charge field
within the bunch. Interaction with the longitudinal space-charge (LSC) field results in
electrons gaining or losing energy, proportional on the magnitude of the LSC field at
their position within the bunch. Via this effect, an initial modulation of the longitudinal
charge density translates into an energy modulation of the bunch. Conversely, due to
the longitudinal dispersion of a subsequent chicane, this energy modulation causes local
changes in the charge density. Using the terms introduced above, this can be understood
by interpreting an energy modulation as a position-dependent chirp, which results in a
local compression or decompression of the bunch. This is the LSC-driven microbunching
process, which can lead to an amplification of inhomogeneities in the longitudinal charge
density. A similar effect can occur in the magnetic chicanes, where it is the interaction
with the CSR field that drives the translation of charge density inhomogeneities into
energy inhomogeneities.

Due to the microbunching instability, even small initial inhomogeneities in the charge
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density can be amplified and cause significant inhomogeneities in the longitudinal phase-
space of the bunch – that is, the joint distribution of the energy and longitudinal position
of the particles. Further, the microbunching-induced energy modulations effectively
increase the energy spread of the bunch. Both effects negatively impact the performance
of the bunch in the radiation-generating FEL process.

The FEL process exploits a collective instability that occurs in magnetic devices
called undulators, which consist of a sequence of small, alternately poled dipole magnets.
This FEL instability relies on the resonant exchange of energy between the electron bunch
and the synchrotron radiation it produces in the undulator. Similar to the microbunching
process in the injector, this causes an energy modulation of the electron bunch. Here,
however, the wavelength of the modulation is determined by the wavelength of the
undulator radiation. Due to the longitudinal dispersion generated by the undulator
dipoles, the energy modulation is converted into modulations of the charge density with
the same wavelength. During the evolution of the FEL instability this effect therefore
causes the bunch to develop charge density modulations with the wavelength λ of the
undulator radiation

λ “ λu

2γ2

ˆ
1 ` K2

2

˙
, (1.0.1)

where λu is the undulator period and K is the dimensionless undulator parameter [1].
It is this equality of the wavelength of the charge-density modulation and the radiation
that enables the generation of coherent radiation in an FEL. Analysis shows that the
power of the radiation field increases exponentially during parts of the FEL process,
which is quantified by the gain length. If, however, the longitudinal phase-space of
the bunch contains large inhomogeneities induced by the microbunching instability, the
development of the aforementioned coherent charge-density modulations during the FEL
instability is hampered, which has a negative impact on the gain length, the quality of
the produced photon pulses, and therefore the overall performance of the FEL.

A basic operation mode of an FEL is based on the self-amplification of spontaneous
emission (SASE), where the spontaneously emitted undulator radiation triggers and is
amplified by the FEL instability. Advanced operation modes of FELs employ sophis-
ticated manipulations of the longitudinal phase-space of the electron bunch before it
enters the undulator – an approach known as external seeding – to control the initial
condition of the instability and consequently control and improve the properties of the
generated photon pulses. In particular, the echo-enabled harmonic generation (EEHG)
seeding scheme is based on the creation of fine substructures in the longitudinal phase-
space [21]. If microbunching-induced inhomogeneities are present in the bunch, the
seed-substructures are disturbed, which can result in a reduced efficacy of the seeding.
Moreover, if the seeded region is small compared to the size of the microbunches, then
the shot-to-shot variation of the resulting radiation might be particularly high, as the
charge density in the seeded region can vary significantly due to stochastic variations
of the initial conditions of the microbunching instability. Overall, due to the resulting
stochastic variations of the longitudinal phase-space, the microbunching instability can
can contribute significantly to the fluctuations of the photon-pulse properties, not only
in seeded operations modes, but also in SASE operation [22–24].

Analysis shows that the growth rate of the microbunching instability depends criti-
cally on the energy spread of the electron bunch [18]. To exploit this effect to suppress
the microbunching instability, it was proposed to implement a so-called laser heater [18].
A laser heater consists of an undulator in which the electron bunch interacts with a laser
pulse in the optical or infra-red spectrum, which results in an energy modulation of
the bunch at the same wavelength as the laser pulse. In a subsequent magnetic chicane,
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these modulations are overlapped with each other in the longitudinal phase-space so that
their individual contributions to the charge density average out and the energy spread
of the bunch is increased. To achieve optimal performance of the FEL, a setting of the
laser heater has to be found so that the total energy spread after the heating process is
large enough to suppress the microbunching instability but is still small enough to not
impede the FEL process in the undulators.

Another way to manage the microbunching instability is to chose a favorable bunch-
compression working point. A multi-stage bunch compression setup allows to achieve
a given total target compression factor with different combinations of settings of the
relevant operational parameters – namely the settings of the RF-modules and the de-
flection angles of the magnetic chicanes. Within technical limits, the compression can
be variably distributed between the stages. As the non-collective longitudinal dynamics
of the bunch are largely governed by these settings, some working points might facilitate
the mircobunching instability more than others.

Overall, to successfully design and predictively operate a high-gain single-pass free-
electron laser, a good understanding of the microbunching instability and its mitigation
methods is required. To this end, in this work two approaches to investigating the
microbunching instability are presented. In both approaches, the electron bunch is
described by its longitudinal phase-space density (PSD) – a smooth function describing
the stochastic distribution of the particles in phase-space, which will be introduced in
more detail in Section 2.2. Both approaches use the same model of the single-particle
dynamics and the collective effects occurring in free-electron laser injectors, which are
introduced in Section 3 and Section 4, respectively. Together with Section 2, these
sections give a concise introduction to the underlying beam dynamical principles and
the theoretical approaches that are used throughout this thesis.

As the microbunching instability results from small inhomogeneities in the longitu-
dinal phase-space density of the bunch, a natural analytical approach is to treat it as
a perturbation problem, where the inhomogeneities are viewed as a perturbation to an
otherwise homogeneous phase-space density. A perturbative approach has the goal to
derive a formal power series in terms of this perturbation for the phase-space density of
the bunch at a given time. The time evolution of a phase-space density of interacting
particles is governed by the Vlasov equation, which is a non-linear, first order integro-
partial-differential equation, see Section 2.3. Therefore, in the Vlasov picture, initial
inhomogeneities can be treated as a perturbation of the initial conditions of the Vlasov
equation. A particularly useful way to describe solutions of the Vlasov equation is via
Perron–Frobenius (PF) operators, which are the propagation operators of the phase-
space density. By expanding the Perron–Frobenius operator of a system with respect to
its dependence on the initial conditions, a formal power series for the time-evolved phase-
space density can be obtained. Deriving this expansion of collective Perron–Frobenius
operators with the help of Fréchet derivatives and formulating the resulting perturbation
theory are major parts of this work, which is presented in Section 5.

Complementing the analytical approach, a numerical approach is presented, which
is based on the semi-Lagrangian method [25–28]. In the semi-Lagrangian method, the
phase-space density is represented numerically by storing values of the phase-space den-
sity function on a numerical grid. As described in Section 2.5, an advantage of grid-
based methods compared to particle-tracking methods is the absence of artificial nu-
merical shot-noise, which allows to simulate small-scale collective effects – such as the
microbunching instability – with higher fidelity. Unfortunately, the longitudinal phase-
space densities prevalent in free-electron laser injectors are typically hard to represent
efficiently on a numerical grid. This is due to the exotic shape of their support, which
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regularly features not only a large energy chirp, but additionally also strong non-linear
correlations. For such a phase-space density, a rectangular homogeneously spaced grid
would cover mostly empty areas of phase-space and only small parts of it would actu-
ally intersect the support of the phase-space density. Implementing the semi-Lagrangian
approach with a homogeneous grid in a simulation code is therefore not viable, as a
prohibitively large amount of memory and computation time would have to be spent on
representing and propagating empty areas of phase space. In Section 6, the development
of a semi-Lagrangian V lasov code called SelaV1D is presented, which overcomes the nu-
merical challenge posed by exotic phase-space densities by employing tree-based domain
decomposition [29]. Here, a rectangular simulation domain is decomposed into a hierar-
chy of nested sub-rectangles, which forms a tree structure. The hierarchy is generated in
a way, so that only those rectangles intersecting the support of the phase-space density
have descendants. Only on the leaf rectangles – those furthest down the hierarchy –
the values of the phase space density are stored on a homogeneous grid covering the
leaf. This allows to numerically neglect empty areas of phase-space and store only the
non-zero values of the phase-space density.

Both approaches, analytical and numerical, are applied to investigate the microbunch-
ing instability and potential mitigation strategies for the FLASH2020+ upgrade project
of the free-electron laser FLASH in Hamburg [30].
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2 Theoretical Foundations

In this section, a brief summary of the theoretical concepts that are used throughout
this work is given. Firstly, a formulation of Hamiltonian systems and solutions of their
equations of motion, based on Lie-operators, is recapitulated [31–33]. Subsequently,
the concept of a phase-space density is introduced. A method to solve their evolution
equation – the Liouville equation – is presented which is based on the method of charac-
teristics. It becomes apparent that solutions of the Liouville equation can be expressed
in terms of propagation operators, the so-called Perron–Frobenius operators, which play
a central role in this work. A summary of the Hamiltonian formulation of accelerator
beam dynamics is given, introducing concepts and terminology specific to particle ac-
celerators. The section is concluded by an overview of different simulation methods to
simulate the evolution of a phase-space density.

2.1 Hamiltonian Mechanics

In a time-dependent Hamiltonian system the dynamics are governed by single function
C1 Q H : RˆR

2n Ñ R, which is called the Hamiltonian, where n is the number of degrees
of freedom of the system. In addition to the time dependence, the Hamiltonian depends
on 2n arguments, called the canonical variables, which are denoted by q “ pq1, . . . , qnqT,
and their conjugate momenta p “ pp1, . . . , pnqT. Together, q and p span the phase-
space of the system. A complete set of phase-space variables is denoted by the symbol
z “ pq1, p1, . . . , qn, pnqT.

Phase-space variables evolve in time according to the equation of motion generated
by the Hamiltonian, which reads

dzi
dt

“ ´ tH,ziu|t,z , (2.1.1)

for i “ 1, . . . , n, where t¨, ¨u denotes the Poisson bracket, which is defined as

tf, gu ”
nÿ

j“1

Bf
Bqj

Bg
Bpj

´ Bg
Bqj

Bf
Bpj

, (2.1.2)

for any two functions C1 Q f, g : R2n Ñ R. Equivalently, the Poisson bracket can be
written in terms of the gradients of its arguments

tf, gu “ p∇zfqT J2n ∇zg, (2.1.3)

where J2n P R
2nˆ2n is given by the direct sum J2n “ J ‘ ˆn¨ ¨ ¨ ‘ J of the matrix

J ”
ˆ

0 1
´1 0

˙
. (2.1.4)
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Using this vector notation, the component-wise formulation of the equations of mo-
tion (2.1.1) can be brought into the more compact form

d

dt
z “ J2n ∇zH|t,z , (2.1.5)

where the term on the right hand side is called the vector field F pt,zq “ J2n ∇zH|t,z
generated by the Hamiltonian.

By defining the Lie operator of a phase-space function f via

:f : ¨ ” tf, ¨u (2.1.6)

Equation (2.1.1) can be written as

dz

dt
“ ´ :Hpt,zq : z. (2.1.7)

If the Hamiltonian is actually time-independent dH
dt

“ 0, the system is called autonomous
and the solution of Equation (2.1.7) is given by

zptq “ φtpz0q “ expp´t :Hpzq :qz|z0 , (2.1.8)

for the initial condition zpt “ 0q “ z0. This forms a family of solutions, with the initial
condition z0 as the family parameter, which is called the flow φtpzq of the system. It
can be seen that the flow of an autonomous system fulfills the semi-group property with
respect to composition

φt0 ˝ φt1 ” φt0pφt1p¨qq “ φt0`t1 , (2.1.9)

for all t0, t1 P R. This implies that flows are invertible, as it is φt ˝ φ´t “ φ0 “ Id. If
the Hamiltonian does depend on time, the system is non-autonomous and the equations
of motion are not solved by Equation (2.1.8). Nevertheless, it can be seen that for a
sufficiently regular H also in the non-autonomous case a flow φtÐt0pzq exists in some
domain around z0, which additionally depends on the time t0 of the initial condition and
fulfills the relation

φt2Ðt1 ˝ φt1Ðt0 “ φt2Ðt0 , (2.1.10)

for all t0, t1, t2 P R.

Flows define, for a fixed initial and final time, maps from the phase-space onto itself,
which are, by virtue of the invertibility of flows, in fact automorphisms M P autpR2nq.
A map M is called symplectic iff its Jacobian Dpzq ” ∇zM |z fulfills the condition

DpzqT J2nDpzq “ J2n, (2.1.11)

in which case Dpzq is called a symplectic matrix, for all z P R
2n. It can be seen that a

flow of a Hamiltonian system always defines symplectic maps, for all values of the time
parameter.

While maps arise naturally from the flow of Hamiltonian systems, it can be conve-
nient, especially when modeling physical systems, to be able to define maps ab initio,
without knowing the Hamiltonian that generates them explicitly. When defining such a
map, it is mandatory to ensure that the map fulfills the symplectic condition (2.1.11),
as it would otherwise violate a basic property of Hamiltonian systems. In this work, we
make heavy use of this approach to model the longitudinal beam dynamics in an FEL
injector.
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2.2 Phase-Space Densities

The dynamical state of a single particle is completely determined by its position in
phase-space. Consequently, the total state of an ensemble of N particles is exactly de-
scribed by the set of the phase-space coordinates Z P R

2nN of its constituents, which
we will refer to as the system’s microscopic state. If the number of particles in the con-
sidered ensemble is large, as for instance in a particle bunch where N can easily reach
values of 108 . . . 1012, it becomes unwieldy to keep track of the phase-space trajectories
of all particles individually. Apart from the fact that the sheer number of particles pro-
hibits any attempt to actually compute the trajectories, it is also typically impossible
to know the initial conditions required to describe the initial microscopic state of the
system. A statistical approach might therefore be better suited to treat many-particle
systems. In such an approach, the phase-space coordinates of the particles are assumed
random variables that are distributed following a distribution function that is called the
microscopic phase-space density (PSD). A microscopic phase-space density is a function
fN :R2nN Ñ R which describes the probability fN pZq to find the system in the micro-
scopic state Z [34]. Macroscopical properties of the system can then be derived from the
statistical properties of this distribution function. While this approach removes the need
to specify the precise initial microscopic state of an ensemble, in application it is still a
most likely unsurmountable challenge to describe the evolution of the p2nNq-parametric
microscopic phase-space density, due to the large number of its parameters.

A less intricate description of a many-particle system is possible, if the phase-space
coordinates of the particles can be assumed to be independent, and identically distributed
(IID) [35]. In that case, the initial phase-space coordinates of all particles are distributed
following a single, common phase-space density Ψ : R2n Ñ R, which is a function of a
single set of phase-space coordinates only. Such a function Ψ is commonly referred to
as the macroscopic phase-space density. This is in contrast to the microscopic phase-
space density fN :R2nN Ñ R, which is a function of the phase-space coordinates of all
particles. Due to the reduced number of parameters, one-particle phase-space densities
are much easier to handle than their microscopic counterparts, making them a viable
option to describe IID many-particle systems analytically and puts them within the
reach of numerical treatability. Throughout this work, we use the term “phase-space
density” exclusively to refer to a one-particle phase-space density and use the modifier
“microscopic” where distinction between the two concepts is necessary.

In the following, we will consider phase-space densities that live on the Banach space
of Lebesque integrable functions W “ LppR2n,Rq, with some 1 ď p ă 8.

2.3 Time-Evolution of Phase-Space Densities

Having introduced the concept of a phase-space density, we will now investigate how to
determine the time-evolution of the phase-space density of a many-particle system.

2.3.1 Macroscopic Liouville Equation

If the particles do not interact with one another, it can be seen that the time-dependent
phase-space density Ψpz, tq adheres to the evolution equation

B
BtΨ “ :H : Ψ “ pJ2n∇zHqT∇zΨ (2.3.1)

which is known as the Liouville equation, with an initial condition Ψpt0,zq “ Ψ0pzq and
where H : R2n Ñ R is the single-particle Hamiltonian of the system [36,37].
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The Liouville equation can be derived by showing that the total derivative of the
phase-space density vanishes

d

dt
Ψ “ B

BtΨ `
ˆ

d

dt
z

˙T

∇zΨ “ 0, (2.3.2)

which is known as Liouville’s theorem [37], from which Equation (2.3.1) follows imme-
diately. A proof of Liouville’s theorem can be obtained by showing that a phase-space
density fulfills the continuity equation

B
BtΨ ` ∇

T
z

ˆ
Ψ

d

dt
z

˙
“ 0, (2.3.3)

from which Equation (2.3.2) follows after noticing that ∇T
z

d
dt
z “ 0 [32].

Along the same lines, it can be seen that the time evolution of a microscopic phase-
space density is given by the 2nN -dimensional equivalent of the Liouville equation

B
BtfN “ :H2nN : fN “ pJ2nN ∇ZH2nN qT∇ZfN , (2.3.4)

where the Hamiltonian H2nN : R2nN Ñ R is a function of all 2nN phase-space variables.

2.3.2 Method of Characteristics

It can be seen from Equation (2.3.1) that the Liouville equation (2.3.1) is a linear first-
order partial differential equation (PDE). More specifically, the Liouville equation be-
longs to a class of PDEs that can be solved by the so-called method of characteristics [38].
The method of characteristics works by transforming the PDE into a system of two or-
dinary differential equations. One is an equation of motion for a trajectory through the
domain of the PDE, which in the case of the Liouville equation is the phase space. A
solution of this ODE is called a characteristic, which gives the method its name. The
second ODE describes the rate of change of the value of the solution of the original PDE
along its characteristics. From the solutions of both ODEs, a solution of the original
PDE can be constructed.

Consider the initial value problem
"

B
Btupt,zq ` F pt,zqT ∇zupt,zq “ Spt,zq
upt0,zq “ u0pzq, (2.3.5)

for upt,zq, u : R ˆ R
2n Ñ R, with the known initial condition u0pzq : R2n Ñ R, the

vector field F pt,zq : R ˆ R
2n Ñ R

2n and the source term Spt,zq : R ˆ R
2n Ñ R. Let

the characteristic ξ : R Ñ R
2n be a C1 path through R

2n, which originates at the initial
time at ξpt0q “ z0. Let further vptq, v : R Ñ R be the solution of the initial value
problem (2.3.5), at time t evaluated at the position ξptq, that is

vptq ” upt, ξptqq. (2.3.6)

Comparing the total time-derivative of v

d

dt
vptq “ B

Btupt,zq `
ˆ B

Btξptq
˙T

∇zupt,zq (2.3.7)

with the original PDE (2.3.5), it can be seen that the two equations can be made equal
by setting "

B
Btξptq “ F pt,zq, ξpt0q “ z0
d
dt
vptq “ Spt,zq, vpt0q “ u0pz0q. (2.3.8)
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This defines a system of ODEs that is equivalent to the initial PDE.

It can be seen that the Liouville equation (2.3.1) is of the form (2.3.5), where the
vector field is given by the Hamiltonian vector field F pt,zq “ J2n∇zH and the source
term vanishes Spt,zq “ 0. Hence, the ODE for the characteristic ξ is equivalent to
Hamilton’s equations of motion. As a result, we see that the characteristics of the
Liouville equation are given by the Hamiltonian flow φtÐt0 of the system, as introduced
in Section 2.1, so that ξptq “ φtÐt0pz0q. As the source term vanishes, the ODE for v has
the trivial solution vptq “ Ψpt, ξptqq “ Ψ0pz0q. Using the invertibility of the flow, it can
be seen that the origin of a characteristic can be reconstructed via

ξptq “ φtÐt0pz0q ô z0 “ φ´1
tÐt0

pξptqq “ φt0Ðtpξptqq. (2.3.9)

Therefore, an expression for the solution can be obtained from Ψpt, ξptqq “ Ψ0pz0q by
applying the inverse flow to the arguments on both sides which yields

Ψpt,zq “ Ψ0pφt0Ðtpzqq. (2.3.10)

In summary, we see that the value of the phase-space density is preserved along the
characteristics, which are given by the Hamiltonian flow of the system. This well-known
result is also commonly referred to as Liouville’s theorem.

2.3.3 Perron–Frobenius Operators

In the following, we will describe the dynamics of a system by using maps instead of
Hamiltonian flows, keeping in mind the aforementioned close relationship between the
two concepts. We have seen that the solution Ψ1pzq “ Ψpt1,zq of the Liouville equation
at any given time t1 can be constructed from the initial condition Ψ0 “ Ψpt0, ¨q, by
evaluating the initial condition at the position of the characteristic at time t0 that reaches
the point z at time t1. Let M : R2n Ñ R

2n be an invertible, measure preserving map that
propagates the phase-space coordinates from t0 to t1, which for example could – but does
not necessarily have to be – given by a symplectic flow φt1Ðt0 . Via Equation (2.3.10) it
can be seen that Ψ1 is then given by the composition of the initial condition with the
inverse of M . As this operation is so fundamental for the description of the evolution of
phase-space densities, it is convenient to introduce an operator notation for it. To this
end [26, 39], the so-called Perron–Frobenius (PF) operator M : W Ñ W associated to
the map M : R2n Ñ R

2n is defined by

MΨ ” Ψ ˝ M´1 “ ΨpM´1p¨qq, (2.3.11)

which is closely related to the Ruelle transfer operator [40]. Perron–Frobenius operators
are the propagation operators for phase-space densities in the sense that

Ψ1 “ MΨ0. (2.3.12)

In this work, we use the calligraphic version of the symbol used for a map to denote
its associated Perron–Frobenius operator. The rare exceptions from this convention are
pointed out explicitly.

As a PF operator is defined via the inverse of a given invertible map, it immediately
follows that a PF operator is invertible itself, where its inverse is given by the composition
operation with the associated non-inverted map

M
´1Ψ ” Ψ ˝ M . (2.3.13)
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With this, it is
M´1MΨ “ Ψ ˝ M ˝ M´1 “ Ψ ˝ Id “ Ψ (2.3.14)

and analogously MM´1Ψ “ Ψ. We note that the PF operator I associated to the
identity map Id “ Id´1 : z ÞÑ z is the identity operator in the sense that for any PF
operator it is

IMΨ “ Ψ ˝ M´1 ˝ Id´1 “ Ψ ˝ M´1 “ MΨ, (2.3.15)

and analogously MI Ψ “ MΨ, which implies that

IM “ MI “ M. (2.3.16)

Further, it can be seen from the associativity of the composition operation that con-
sequently PF operators are also associative in the sense that for any three PF operators
A,B, C it is

pABq CΨ “ Ψ ˝ C´1 ˝ pA ˝ Bq´1 “ Ψ ˝ C´1 ˝B´1 ˝ A´1

“ Ψ ˝ pB ˝ Cq´1 ˝A´1 “ A pB CqΨ,
(2.3.17)

which shows that

pABq C “ A pB Cq. (2.3.18)

From the existence of an inverse element (2.3.13), the existence of an identity ele-
ment (2.3.16) and the associativity (2.3.18), it follows that Perron–Frobenius operators
form a group, which we will denote with the symbol PF , where the group operation is
the subsequent application of the operators.

2.3.4 Linear Automorphisms on W

For all Ψ,Φ P W and µ, ν P R it is

M pµΨ`νΦq “ pµΨ`νΦq ˝M´1 “ µΨ˝M´1 `νΦ˝M´1 “ µMΨ`νMΦ, (2.3.19)

which shows that PF operators are a subset of the linear automorphisms on the Banach
space of the phase-space densities

PF Ă autpW,Wq, (2.3.20)

PF Ă linpW,Wq. (2.3.21)

For any two K-vector spaces U and V , the set of linear maps linpU, V q between them
is defined to consist of those maps that, for all x, y P U and all µ, ν P K, fulfill the
relation

fpµx` νyq “ µfpxq ` νfpyq. (2.3.22)

In the following it will be shown that linpU, V q forms a K-vector space itself. Let f, g, h P
linpU, V q, x, y P U and µ, ν P K. From the associativity and commutativity of V it can
be seen via

rf `pg`hqspxq “ fpxq`rgpxq`hpxqs “ rfpxq`gpxqs`hpxq “ rpf `gq`hspxq (2.3.23)

and
rf ` gspxq “ fpxq ` gpxq “ gpxq ` fpxq “ rg ` f spxq, (2.3.24)

that linpU, V q is associative, f`pg`hq “ pf`gq`h, and commutative, f`g “ g`f , as
well. Denoting the additive neutral element of V with 0V , the additive neutral element
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of linpU, V q is given by the map 0linpU,V q : x ÞÑ 0V , which maps all elements of U to 0V .
With this, it is

rf ` 0linpU,V qspxq “ fpxq ` 0linpU,V qpxq “ fpxq ` 0V “ fpxq, (2.3.25)

which implies f ` 0linpU,V q “ f . For each element f of linpU, V q, an additive inverse
´f exists, which is given by the map ´f : x ÞÑ ´pfpxqq, which takes x to the additive
inverse of fpxq, as this implies

rf ` p´fqspxq “ fpxq ` p´fpxqq “ fpxq ` p´pfpxqqq “ 0V . (2.3.26)

In the same vein, the remaining vector-space axioms of linpU, V q relating to scalar mul-
tiplications with elements of K are directly implied by the corresponding axioms of V
and we omit the proofs.

When considering endomorphisms of a vector space – where the domain and codomain
of the considered maps is the same, U “ V – in addition to vector-space addition, a sec-
ond inner operation can be defined on the set of linear maps linpU,Uq, namely operator
composition, that is subsequent application of maps, which we will denote with ˝. For
f, g P linpU,Uq it is

rg ˝ f spµx` νyq “ gpfpµx` νyqq “ gpµfpxq ` νfpyqq
“ µgpfpxqq ` νgpfpyqq “ µrg ˝ f spxq ` νrg ˝ f spyq, (2.3.27)

which implies that rg ˝ f s P linpU,Uq. Operator composition is therefore indeed an inner
operation on the linear maps

˝ : linpU,Uq ˆ linpU, V q Ñ linpU,Uq. (2.3.28)

Further, with f, g, h P linpU,Uq it can be seen from

h ˝ rg ˝ f s “ hprg ˝ f sp¨qq “ hpgpfp¨qqq “ hpgp¨qq ˝ f “ rh ˝ gs ˝ f (2.3.29)

that operator composition is associative. It is evident, that the identity map IdlinpU,Uq :
x ÞÑ x is linear in the sense of Equation (2.3.22) and is therefore contained in linpU,Uq.
For all f P linpU,Uq it is

IdlinpU,Uq ˝f “ f ˝ IdlinpU,Uq “ f, (2.3.30)

which shows that IdlinpU,Uq is the identity element with respect to operator composition.
The existence of such an identity element makes linpU,Uq a unitary algebra.

Above we have shown that the set of linear maps between two vector spaces linpU,Uq,
forms a vector space itself and it admits a second, associative inner operation, which is
operator composition. Therefore, linpU,Uq forms an associative algebra. It is important
to note that as Perron–Frobenius operators are a subset of linpW,Wq, they are contained
within the algebra but the group of PF operators PF itself is neither a vector space nor
an algebra. In Section 5.1, we will exploit the fact that PF operators are contained
within the algebra of linear maps to derive a series expansion of a certain type of PF
operator.

2.3.5 Lie Transformation Representation

At the time t1 the phase-space density can be written formally as the power series

Ψpz, t1q “
ÿ

n“0

pt1 ´ t0qn
n!

BnΨ
Btn

ˇ̌
ˇ̌
t“t0

. (2.3.31)
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From the Liouville equation (2.3.1), it can be seen that the higher-order partial deriva-
tives appearing in the power series can be expressed by repeated application of the Lie
operator :H :

BnΨ
Btn “:H :n Ψ. (2.3.32)

By defining the Lie transformation

expp:H :q ”
ÿ

n“0

1

n!
:H :n (2.3.33)

the final phase-space density can be written as

Ψ1pzq “ expprt1 ´ t0s :H :qΨ0pzq. (2.3.34)

This shows the equivalence of the Perron–Frobenius operator M and the Lie transfor-
mation

M “ expprt1 ´ t0s :H :q. (2.3.35)

We will make use of this representation in Section 5.4.1 to derive the Fréchet derivative
of a certain class of collective Perron–Frobenius operators, which will be introduced
later. An extensive treatise of Lie transformations, their properties and their convergence
properties can be found in reference [33].

2.3.6 Interacting Particles

Until now we have assumed that the particles of a many-particle system do not interact
with each other, in the sense that the time-evolution of any particle is independent on
the phase-space position of all other particles in the ensemble. We will now introduce
approaches that allow to take into account certain types of interaction between the
particles [41].

2.3.6.1 Bogoliubov-Born-Green-Kirkwood-Yvon Hierarchy

If the interaction between the particles can be described by adding a pair-wise inter-
action Hamiltonian to the external single-particle Hamiltonian, then the time-evolution
of the system is fully described by the resulting microscopic N -particle Liouville equa-
tion (2.3.4). Due to the interaction terms, an analytic solution of this collective micro-
scopic Liouville equation is typically not obtainable. Bogoliubov, Born, Green, Kirk-
wood, and Yvon [42–44] conceived the result that the evolution equation of a s-particle
density fs can be obtained by integrating the N -particle Liouville equation over the
phase-space coordinates of the remaining N ´ s particles. This results in an inhomo-
geneous Liouville equation for fs, where the inhomogeneity can be calculated from the
s ` 1-particle density fs`1. As a result, a chain of equations is obtained, relating an
s-particle density to the s ` 1-particle density, which is called the BBGKY hierarchy,
after the aforementioned authors [42]. Following the BBGKY hierarchy down to its end
leads back to the original microscopic Liouville equation. However, truncating the chain
at a certain depth, for instance by modeling all following contributions instead of solving
them explicitly, is a viable approach to obtain actually treatable kinetic equations.

2.3.6.2 Boltzmann Equation

A prominent example of a kinetic equation that can be interpreted as the result of a
truncated BBGKY hierarchy is the Boltzmann equation [37, 45]

B
BtΨ´ :H : Ψ “ CrΨs, (2.3.36)
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which corresponds to an inhomogeneous Liouville equation, where the inhomogeneity
is given by the so-called collision term CrΨs, that depends on the current phase-space
density Ψ. The Boltzmann equation describes the evolution of the phase-space density
of an ensemble of particles when binary scattering between the particles can occur. It
takes the form

CrΨspq,pq “
ż

R2n

W ppa,pb,pc,pq
“
Ψpq,paqΨpq,pbq ´ Ψpq,pcqΨpq,pq

‰
dpa dpb dpc,

(2.3.37)
with the scattering cross-section W ppa,pb,pc,pq, which describes the probability of two
particles to change their momenta from pa and pb before the collision to pc and p after
the collision. With this it can be seen that the Boltzmann equation (2.3.36) defines a
first order, non-linear, integro-partial differential equation.

2.3.6.3 Vlasov Equation

In many physically relevant systems, the particles dominantly interact with one an-
other via long-range forces, such as the electrostatic force or gravity. In that case, it
is appropriate to employ the so-called mean-field approximation, in which the combined
interactions with all particles is described via a smooth field [34]. Collective interactions
of this type can be accounted for by augmenting the single-particle Hamiltonian H0 of a
system with a term HcolrΨs that reflects the collective interaction potential and therefore
depends on the current phase-space density Ψ. This yields the so-called Vlasov equation

B
BtΨpt,zq´ :H0 `HcolrΨpt, ¨qs : Ψpt,zq “ 0, (2.3.38)

which is the evolution equation of the phase-space density of a system of particles whose
interactions can be described by a smooth interaction potential [46].

In many cases the interaction potential is given by the solution of a Poisson-type
equation, with the configuration-space density ρpqq “

ş
Rn Ψpq,pqdnp as its source term.

Then, the collective Hamiltonian can be determined from the phase-space density via a
projection along p followed by a convolution with the Green’s function G of the Poisson
equation with respect to q

HcolrΨs “
ż

R2n

Gpq, q1qΨpq1,p1qdnp1 dnq1 (2.3.39)

Just as the Boltzmann equation, this Vlasov equation is a first order, non-linear,
integro-partial differential equation, with the difference that in the former, the non-
linearity results from a collective dependence of the inhomogeneity, while in the latter
it is a result of the collective dependence of the Hamiltonian.

The Vlasov equation is the appropriate kinetic equation to describe the evolution of
the phase-space density of an electron bunch in a particle accelerator, where scattering
processes can be neglected and collective interactions can occur for instance via space-
charge forces, wake fields, and coherent synchrotron radiation.

2.3.7 Collective Perron–Frobenius Operators

Due to the non-linearity of the Vlasov equation, an explicit analytic solution generally
cannot be derived. In particular, the method of characteristics cannot be applied di-
rectly to the Vlasov equation. Nevertheless, we will here make the assumption that for
well-behaved collective and single-particle Hamiltonians a unique solution of the Vlasov
equation does exist, at least on a finite time interval. Let ΨrΨ0spt,zq be the solution of
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the Vlasov equation (2.3.38), with the initial condition Ψpt0,zq “ Ψ0pzq. We note that
ΨrΨ0spt,zq is fully determined by Ψ0, as fixing an initial condition Ψ0pzq directly implies
the time-evolution ΨrΨ0spt,zq of the system. By plugging in the solution ΨrΨ0spt,zq
into the argument of the collective Hamiltonian, we obtain the resultant collective Hamil-
tonian

ĤrΨ0spt,zq “ H0pt,zq `HcolrΨrΨ0spt, ¨qspt,zq, (2.3.40)

which formally depends only on the initial condition Ψ0, as the current phase-space
density ΨrΨ0s is, as mentioned above, fully determined by Ψ0. Hence, resultant collective
Hamiltonians can be viewed as a family of time-dependent Hamiltonians, whose family
parameter is the initial condition of the phase-space density Ψ0. Once this parameter is
fixed, the resultant collective Hamiltonian is an ordinary time-dependent Hamiltonian.
As a result, also the symplectic flow φrΨ0stÐt0 generated by this Hamiltonian depends on
the initial condition parameter. Further, one can define the resultant collective Perron–
Frobenius operator MrΨ0s with the associated map φrΨ0st1Ðt0 , which propagates the
initial condition to a given time t1 via

Ψpt1, ¨q “ MrΨ0sΨ0. (2.3.41)

Formally, a collective Perron–Frobenius operator Mr¨s is, with respect to its dependence
on the initial condition, a mathematical entity that takes a phase-space density and
produces a Perron–Frobenius operator, Mr¨s : W Ñ PF .

It needs to be stressed, that this description of the solution of the Vlasov equation via
collective PF operators is generally of formal nature only, as determining a closed-form
expression for the resultant PF operator of course still requires a closed-form solution of
the Vlasov equation in the first place. Collective PF operators therefore do not provide
the means to solve a Vlasov equation.

If the solution of a Vlasov equation is known or can be approximated, then collective
PF operators provide an excellent formalism to study the influence of changes of the
initial condition on the dynamics of the system. Developing this formalism and applying
it to derive a perturbation theory for the microbunching instability is a major part of
this work, which is presented in Section 5.

2.4 Vlasov Equation with Self-Preserving Hamiltonians

In general, the Vlasov equation (2.3.38) cannot be solved analytically for an arbitrary
single-particle Hamiltonian H0 and collective Hamiltonian Hcol. Only in special cases an
analytical solution can be obtained. In this section we will define a class of Hamiltonians
for which the Vlasov equation indeed does admit such an exact solution. This section
constitutes a summary of the key results presented in reference [47] by the author.

By defining
HrΨs ” H0 `HcolrΨs, (2.4.1)

the Vlasov equation (2.3.38) can be written as the initial value problem

#
BΨ
Bt ´ tHrΨs,Ψu “ 0

Ψp0,zq “ Ψ0pzq.
(2.4.2)

Integrating the Vlasov equation over time yields a formal solution for the phase-space
density

Ψpt,zq “ Ψ0pzq `
ż t

0

BΨ
Bt1 dt1 “ Ψ0pzq `

ż t

0

tHrΨs,Ψu|t1 dt1, (2.4.3)
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which is not an explicit solution, as Ψ occurs on both sides of the equation. Substituting
the collective argument of the Hamiltonian in the Vlasov equation (2.4.2) with the formal
solution (2.4.3) yields

BΨ
Bt ´

"
H

„
Ψ0 `

ż t

0

tHrΨs,Ψu|t1 dt1

,Ψ

*
“ 0. (2.4.4)

Without making further assumptions about the Hamiltonian, this expression cannot be
further simplified. In the following we will consider the case of Hamiltonians that are
affine linear with respect to their collective dependence – that is, they satisfy the relation

HrµΨ ` νΦs “ HcolrµΨ ` νΦs `H0 “ µHcolrΨs ` νHcolrΦs `H0, (2.4.5)

for any µ, ν P R and Ψ,Φ P W. Using this and the fact that the Poisson bracket is
bilinear, Equation (2.4.4) can be written as

BΨ
Bt ´ tH rΨ0s ,Ψu “

ż t

0

tHcol rtHrΨs,Ψu|t1 s ,Ψu dt1. (2.4.6)

We note that the Hamiltonian on the left-hand side of this equation depends only on
the initial condition Ψ0 of the phase-space density – crucially, it does not depend on the
current phase-space density. Formally, Equation (2.4.6) can be viewed as a Boltzmann
equation with a generalized “collision” term which is given by a time integral involving
the history of the phase-space density up to the current time t. Therefore, if the right-
hand side of Equation (2.4.6) vanishes for all Ψ, the Vlasov equation reduces to the
Liouville equation

BΨ
Bt ´ tHrΨ0s,Ψu “ 0. (2.4.7)

The only way the right-hand side of Equation (2.4.6) can vanish for all phase-space
densities is that the Hamiltonian in the first argument of the Poisson bracket vanishes

Hcol rtHrΨs,Ψus “ 0, @Ψ. (2.4.8)

Expressing Hr¨s via Equation (2.4.1), it can be seen that this condition is fulfilled if
both,

Hcol rtHcolrΨs,Ψus “ 0 (2.4.9)

and

Hcol rtH0,Ψus “ 0, (2.4.10)

hold simultaneously for all Ψ. We call Hamiltonians that fulfill this condition self-
preserving.

2.4.1 Convolution-Type Collective Hamiltonians

In the following, we consider collective Hamiltonians Hcol “ HK that depend on the
phase-space density via a convolution with a kernel function Kp¨, ¨q : R2n ˆ R

2n Ñ R:

HKrΨspt,zq ” pK ˚ Ψqpt,zq ”
ż

R2n

Kpz,z1q Ψpt,z1q dz1 (2.4.11)
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In that case, the left-hand side of Equation (2.4.9) can be written as

HK rtHKrΨs,Ψus “
ż

R2n

Kpz,z1q
"ż

R2n

Kpz1,z2qΨpt,z2q dz2,Ψpt,z1q
*

z1

dz1 (2.4.12)

“
ĳ

R2nˆR2n

Ψpt,z2q Kpz,z1q
 
Kpz1,z2q,Ψpt,z1q

(
z1 dz1 dz2 (2.4.13)

“
ĳ

R2nˆR2n

Ψpt,z2q Ψpt,z1q
 
Kpz,z1q,Kpz1,z2q

(
z1 dz1 dz2, (2.4.14)

where the notation t¨, ¨uz1 is used to denote that the Poisson bracket acts on the coor-
dinates z1. Equation (2.4.13) follows from the fact that the Poisson bracket is bilinear,
so that the integral over z1 can be taken out of the Poisson bracket, assuming that both
Ψ and K are sufficiently regular. The validity of Equation (2.4.14) can be seen from
Theorem 1, assuming Ψ and K fulfill the smoothness condition required by the theorem.

Theorem 1 (Poisson Bracket Integral). Let u P C1pR2n,Rq and v,w P C2pR2n,Rq with

lim
ziÑ8

u
Bpv wq

Bzj
“ 0 (2.4.15)

for all i, j P t1, . . . , 2nu, then it is
ż

R2n

tu, vu w dz “
ż

R2n

tw, uu v dz. (2.4.16)

Proof. Let Jij be the components of the matrix J2n and f “ v w. It is

ż

R2n

tu, fu dz “
2nÿ

i,j“1

Jij

ż

R2n

Bu
Bzi

Bf
Bzj

dz (2.4.17)

“
2nÿ

i,j“1

Jij

ż

R2n´1

«
u

Bf
Bzj

ˇ̌
ˇ̌
zi“8

zi“´8

´
ż

R

u
B2f

BziBzj
dzi

ff
dpzzziq (2.4.18)

“ ´
2nÿ

i,j“1

Jij

ż

R2n

u
B2f

BziBzj
dz “ 0, (2.4.19)

where the last equality follows from the antisymmetry of J2n. To denote integration
over all except the ith coordinates the notation

ş
R2n´1 . . . dpzzziq is used.

The Poisson bracket obeys the Leibniz rule tu, vuw “ tu, vwu ´ tu,wu v. Therefore,
it isż

R2n

tu, vu w dz “
ż

R2n

tu, v wu dz ´
ż

R2n

tu,wu v dz “
ż

R2n

tw, uu v dz. (2.4.20)

From Equation (2.4.14), it can be seen that HK fulfills Equation (2.4.9) if

tKpx,zq,Kpz,yquz “ 0 @x,y P R
2n. (2.4.21)

Analogously, for the single-particle Hamiltonian the left-hand side of Equation (2.4.10)
can be written as

HK rtH0,Ψus “
ż

R2n

Kpz,z1q
 
H0,Ψpt,z1q

(
z1 dz1 (2.4.22)

“
ż

R2n

Ψpt,z1q
 
Kpz,z1q,H0

(
z1 dz1. (2.4.23)
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Therefore, if it is

tKpx,zq,H0uz “ 0 @x,z P R
2n, (2.4.24)

then H0 fulfills the condition (2.4.10).

2.4.2 Poisson-Type Kick Hamiltonians

Of particular importance for this work are Poisson-type kick Hamiltonians, which will be
introduced in more detail in Section 5.5. Poisson-type kick Hamiltonians are a subclass
of the more general convolution Hamiltonians introduced above. Their kernel function,
which arises as the Green’s function G : Rn ˆR

n of a Poisson equation, depends only on
the configuration-space coordinates q P R

n instead of the complete set of phase-space
coordinates z P R

2n

HGrΨspq,pq “
ĳ

RnˆRn

Gpq, q1q Ψpq1,p1q dp1 dq1. (2.4.25)

As the Green’s function does not depend on the conjugate momenta, it immediately
follows that the Poisson bracket in Equation (2.4.21) vanishes, which implies that the
condition holds. By the same argument, if the single-particle Hamiltonian H0 also does
not depend on the conjugate momenta, Equation (2.4.22) is fulfilled.

This most remarkable result shows that Poisson-type kick Hamiltonians together
with drift-type single-particle Hamiltonians are self-preserving. Hence, for this type of
Hamiltonians, the Vlasov equation reduces to a Liouville equation, as shown in Equa-
tion (2.4.7), where the collective Hamiltonian depends only on the initial condition of the
system. In fact, the collective Hamiltonian does not change at all during the evolution of
the system – it remains the same as it was at the initial condition of the system. Using
the notation of Section 2.3.7 this result reads

HGrΨrΨ0spt, ¨qs “ HGrΨ0s. (2.4.26)

As the resulting Liouville equation – in which the initial condition Ψ0 is merely a pa-
rameter of the Hamiltonian – can be solved explicitly via the method of characteristics,
also the associated collective Perron–Frobenius operator can be determined explicitly.
Studying the dependence of such a Perron–Frobenius operator on the initial condition
is the subject of Section 5.1.

2.5 Simulation Methods

In general, the partial differential equation that describe the time-evolution of the phase-
space density of an ensemble of interacting particles cannot be solved analytically, so
that a solution can only be obtained numerically. Different approaches to simulating a
collective many-body system exist, which can be broadly divided into three classes. In
the following, a brief introduction of the three simulation types is given, which constitutes
a summary of parts of reference [41] by the author.

2.5.1 Lagrangian Approach

In the Lagrangian approach, the many-particle system is represented by an ensemble of
simulated particles. As the number of particles present in physical particle bunch can be
very large, it is computationally hugely expensive to simulate a particle ensemble with
the same number of particles. Therefore, typically only a smaller ensemble of so-called

35



macroparticles is simulated. Each macroparticle represents multiple physical particles.
At the start of the simulation, the phase-space coordinates of the macroparticles are
generated following an initial distribution function χ : R2n Ñ R, yielding an ensemble
tz1, . . . ,znu. Following [48], it can be seen how the macroparticle approach can be used
to represent the phase-space density of a system.

From this macroparticle ensemble, the initial phase-space density Ψ can be approxi-
mated by the Klimontovich density

ΨKpt0,zq “
Nÿ

i“1

wi δpz ´ ziq, (2.5.1)

where the weights, wi ” Ψpt0,ziq{rN χpziqs, depend on the actual initial phase-space
density of the system Ψ0 and the chosen initial macroparticle distribution function χ.
An approximation of the expected value of a function f on R

2n with respect to the actual
phase-space density can be computed from the Klimontovich density via

EΨrf s ”
ż

R2n

fpzqΨpzqd2n «
ż

R2n

fpzqΨKpzqd2n “
ÿ

zi

wi fpziq, (2.5.2)

which is an unbiased and consistent estimate for the exact expected value [48].

Let M : R2n Ñ R
2n be the map that maps phase-space coordinates from the time t0

to t1. Applying the method of characteristics shows that the propagated Klimontovich
density is given by

ΨKpt1,zq “ ΨKpt0,M´1pzqq “
Nÿ

i“1

wi δpz ´ Mpziqq, (2.5.3)

which shows that a Klimontovich density can be propagated by mapping its underlying
macroparticles forward in time and keeping their weights unchanged.

While the initial distribution function χ can in principle be chosen arbitrarily, there
are at least two natural choices. Choosing χ to be equal to the initial phase-space density
Ψpt0, ¨q results in the weights wi “ 1{N being equal for all macroparticles. Alternatively,
the particles might be distributed uniformly in a phase-space region U Ă R

2n, covering
the support of Ψpt0, ¨q, in which case it is χ “ |U |´1 and therefore wi “ Ψpt0,ziq |U |{N .
A uniform distribution can be achieved either by generating the particles randomly with
uniform distribution or by generating the particles on a regular grid spanning U . Due
to the different weights of the macroparticles, this approach is referred to as weighted
macroparticle tracking [49].

A most significant advantage of Lagrangian methods is their resilience to the curse
of dimensions, as their computational demand grows only linearly with the number of
phase-space dimensions considered. Increasing the number of phase-space dimensions
by 2 only has the consequence that for each particle two more phase-space coordinates
have to be stored and propagated. This makes Lagrangian methods a prime choice for
systems with a high number of phase-space dimensions.

However, the particulate nature of the phase-space density representation inevitably
introduces inherent inhomogeneities in the phase-space density. This phenomenon is
known as artificial shot noise. Only if the number of macroparticles is close to the
number of physical particles, the artificial shot noise matches the actual shot noise of
the ensemble. For a smaller number of macroparticles, the artificial shot noise can result
in more pronounced inhomogeneities than what would be expected from the natural
shot noise of the physical ensemble. Therefore, great care has to be taken to ensure
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artificial shot noise does not spuriously drive collective instabilities. This is typically
achieved by smoothing the resulting charge density heuristically. If done carelessly, this
can potentially remove or damp also the actual non-artificial inhomogeneities that are
being studied, potentially invalidating the results of the simulation.

2.5.2 Eulerian Methods

In Eulerian methods, a phase-space density is represented numerically by storing its
values on discrete points on a grid which covers a region of the phase-space.

A plethora of different Eulerian methods exists to determine the time evolution of
such a representation of the phase-space density. Prominent examples are finite volumes,
finite elements, and finite differences methods [50]. In a finite differences method, based
on the numerical phase-space density values, the gradients of the phase-space density
are approximated by finite difference schemes, which allows to determine the local rate
of change of the phase-space density from the underlying kinetic equation. Employing a
discrete time-integration scheme, the new local values of the phase-space density after a
time step are approximated.

A significant advantage of Eulerian methods compared to Lagrangian methods is
that, by storing the actual values of the phase-space density on a grid, they produce –
when used properly – a smooth numerical representation of the phase-space density. In
particular, a grid-based representation does not add numerical shot noise.

Due to their reliance on a numerical grid, Eulerian methods are susceptible to the
curse of dimensions, as the number of grid points that is required to achieve a given
resolution grows exponentially with the number of phase-space dimensions. Further,
finite-difference schemes have to fulfill strict criteria to ensure their stability, consistency
and convergence. A particularly critical one is the Courant-Friedrichs-Lewy (CFL) con-
dition, which poses an upper limit for the length of a time-step to ensure the convergence
of the numerical solution. The finer the spatial resolution of the grid, the smaller is the
maximum time step allowed by the CFL condition. Especially when studying effects that
occur on small scales, this can lead to prohibitively small time steps being required. Due
to these restrictions Eulerian methods are less commonly employed in beam-dynamics
simulations than Lagrangian methods.

2.5.3 Semi-Lagrangian Method

In the semi-Lagrangian method, the phase-space density is represented numerically by
storing its values on a grid, similar to an Eulerian method. The distinguishing feature
of the semi-Lagrangian method is that the phase-space density is propagated by direct
application of the method of characteristics (2.3.10), which states that given an initial
phase-space density Ψ0 “ Ψpt0, ¨q, the value of the propagated phase-space density
Ψ0 “ Ψpt1, ¨q at a position z can be calculated by evaluating Ψ0 at the origin of the
characteristic that ends at z:

Ψ1pzq “ Ψ0pM´1pzqq, (2.5.4)

where M : R2n Ñ R
2n is the map that maps the phase-space coordinates from t0 to

t1 [25–28]. This can be directly implemented in a simulation code. To calculate the new
phase-space density numerically, first an empty grid is set up. To determine the value
of the new phase-space density Ψ1pziq at a grid point, the coordinates of the point zi
are tracked backwards in time, which yields their origin M´1pziq at the initial time.
Subsequently, the numerical representation of Ψ0 is evaluated at that origin M´1pziq,
which finally yields the new value Ψ1pziq “ Ψ0pM´1pziqq. Generally, the originM´1pziq
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of zi will not coincide with a grid point of the numerical representation of Ψ0. As the
values of Ψ0 are known only on the grid points, an interpolation scheme needs to be
employed to evaluate Ψ0 at such a off-grid point. This process is repeated for each grid
point of Ψ1, which in the end results in a complete numerical representation of the new
phase-space density.

As the phase-space density is represented on a grid, but the update step is based on
tracking coordinates, the semi-Lagrangian method can be considered a hybrid between
a Lagrangian and an Eulerian method. A significant advantage of the semi-Lagrangian
method over a Lagrangian method is the absence of numerical shot-noise, which allows
this method to be used to study systems in which relevant effects occur on small scales,
as for instance the microbunching instability. Compared to finite difference methods, the
semi-Lagrangian method has the advantage that it allows for arbitrarily long time steps
without becoming inherently instable. As long as the phase-space map M is known, the
update step can be executed, independent on the length of the time step it represents.
As any grid-based method, the semi-Lagrangian method is susceptible to the curse of
dimensions, which is why it is usually only used to simulate systems with a small number
of degrees of freedom [26,51–53].

In Section 6, the development of the semi-Lagrangian Vlasov simulation code SelaV1D

is presented. It overcomes a challenge that grid-based simulation codes face, when it
comes to simulating a phase-space density whose support is shaped in a way that does
not allow it to be captured efficiently on a homogeneous grid, via a tree-based domain
decomposition method.

2.6 Beam Dynamics Basics

In particle accelerators, charged particles are guided and accelerated by electromagnetic
fields. To describe the dynamics of a particle traversing these fields, the Hamiltonian
formalism has proven itself to be a valuable tool. In the following, the Hamiltonian
formalism for charged particles in electromagnetic fields is recapitulated, including the
coordinate transformations commonly used in accelerator physics [54–56].

2.6.1 General Electromagnetic Hamiltonian

In a fixed Cartesian coordinate system with coordinates q “ pqx, qy, qzqT, the Hamilto-
nian of a charged particle with mass m and charge e in an electromagnetic field with
four-potential pφ,Aq, A “ pAx, Ay, AyqT reads

Hpq,p; tq “ eφpqq ` c

b
pp ´ eApqqq2 `m2c2, (2.6.1)

where p “ ppx, py, pzq is the canonical momentum p “ γmv`eA and t is the independent
time coordinate. Assuming that both, A and φ, are time-independent, also H does not
depend explicitly on time and hence is autonomous.

2.6.2 Frenet–Serret Coordinates

In an accelerator beamline, all particles move on similar trajectories and individual
particles deviate only slightly from a reference path rpsq, which is commonly referred
to as the reference orbit. The variable s is called the arc length, which is defined as the
distance traveled along the reference orbit. It is sensible to describe the particle motion
in coordinates relative to this reference orbit instead of in a fixed coordinate system.
One such coordinate system is defined by the so-called Frenet–Serret apparatus [57].
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The origin of this system follows the reference orbit and its basis vectors are the tangent
τ , normal n and binormal b of the reference orbit defined by

τ “ dr

ds
, n “

››››
dτ

ds

››››
´1 dτ

ds
, and b “ τ ˆ n. (2.6.2)

These basis vectors define a right-handed coordinates system and satisfy the ordinary
differential equation

d

ds

¨
˝
τ

n

b

˛
‚“

¨
˝

0 κ 0
´κ 0 ι

0 ´ι 0

˛
‚
¨
˝
τ

n

b

˛
‚, (2.6.3)

where the quantity κ is commonly called the local curvature, which is equivalent to the
inverse of the local bending radius κ “ 1

R
of the orbit. The quantity ι is the torsion

of the orbit. In most cases, accelerators are designed to be close to planar so that the
torsion of their orbit vanishes. With this, any position q in the vicinity of the orbit can
be uniquely expressed in the new coordinates Q “ pQx, Qy, QsqT as

q “ rpQsq `QxnpQsq `QybpQsq, (2.6.4)

where we have introduced Qs ” s for the sake of uniform notation.

2.6.3 Canonical Transformation to Frenet–Serret Coordinates

To transform the Hamiltonian from the fixed Cartesian coordinate system to the co-
moving Frenet–Serret coordinate system, a canonical coordinate transformation with
the time independent generating function

F “ F3pQ,p; tq`q ¨p with F3pQ,p; tq “ ´p ¨ rrpQsq `QxnpQsq `QybpQsqs (2.6.5)

has to be performed [55,56]. The relation between the old and new coordinates is then
given by

qx ” ´BF3

Bpx
, qy ” ´BF3

Bpy
, and qz ” ´BF3

Bpz
, (2.6.6)

which indeed gives the correct expression (2.6.4) when plugging in (2.6.5). For the new
canonical momenta P “ pPx, Py, Psq this transformation yields

Px ” ´ BF3

BQx
“ p ¨ npQsq (2.6.7)

Py ” ´ BF3

BQy
“ p ¨ bpQsq (2.6.8)

Ps ” ´ BF3

BQs
“ p ¨ rτ pQsq `Qx t´κτ pQsq ` ιnpQsqu ´ ιQynpQsqs . (2.6.9)

In the following, we assume that the torsion of the orbit is zero ι “ 0. This fixes the
bend plane to the x-plane. In this case, Ps simplifies to

Ps “ p ¨ τ pQsq r1 ´Qxκs . (2.6.10)

By defining T P SOp3q to be the matrix with row vectors n, b, and τ , the new momenta
can be written as ˆ

Px, Py,
Ps

1 ´Qxκ

˙T

“ Tp, (2.6.11)
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which can be inverted to yield an explicit expression for the old momenta

p “ TT

ˆ
Px, Py,

Ps

1 ´Qxκ

˙T

. (2.6.12)

Similarly, the vector potential A˚ “ pA˚
x, A

˚
y , A

˚
s qT in the new basis is given by

ˆ
A˚

x, A
˚
y ,

A˚
s

1 ´Qxκ

˙T

“ TA, (2.6.13)

which implies

A “ TT

ˆ
A˚

x, A
˚
y ,

A˚
s

1 ´Qxκ

˙T

. (2.6.14)

The scalar potential is invariant under this transformation, so that we have

φ˚ “ φ. (2.6.15)

Generally, the new Hamiltonian H˚ after a canonical transformation with generating
function F is given by

H˚ “ H ` BF
Bt , (2.6.16)

which for the case at hand simplifies to H˚ “ H, as the generating function is not explic-
itly time dependent. Hence, H˚ can be generated from Equation (2.6.1) by expressing
the old coordinates and potential in terms of their new counterparts, which gives

H˚pQ,P ; tq “ eφ˚ ` c

d
pPx ´ eA˚

xq2 `
`
Py ´ eA˚

y

˘2 `
ˆ
Ps ´ eA˚

s

1 ´Qxκ

˙2

`m2c2, (2.6.17)

where we have suppressed the arguments of the vector potential A˚ “ A˚pqpQqq and
scalar potential φ˚ “ φ˚pqpQqq.

2.6.4 Change of the Independent Variable

Up to now, the system was described with the time t as the independent variable. For
the application to accelerator physics, it is however much more convenient to use the
arc length s as the independent variable, because while the physical distance between
elements of the beam line along the orbit is given by the geometry of the machine, the
arrival time of a particle at those elements varies between particles [55]. Unfortunately,
this change of the independent variable cannot be achieved directly via a generating
function as before. Instead, in order to derive the new Hamiltonian and canonical
variables we have to resort to the principle of least action

δS ” δ

ż t1

t0

„
p ¨ dq

dt
´Hpq,p; tq


dt “ 0, (2.6.18)

with q “ pq1, . . . , qnqT and p “ pp1, . . . , pnqT. Assume we want the coordinate qn to
act as the new independent variable. To achieve this, we start by taking its conjugate
variable pn and consider it as a function of the remaining canonical variables as well as
the Hamiltonian H and time t

pn “ pnpq, p1, . . . , pn´1, t,Hq. (2.6.19)
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Equation (2.6.18) then gives

ż t1

t0

ˆ n´1ÿ

i“1

”
δpi

dqi
dt

` pi
dδqi
dt

` Bpn
Bqi

δqi
dqn
dt

` Bpn
Bpi

δpi
dqn
dt

ı
` (2.6.20)

Bpn
Bqn

δqn
dqn
dt

` Bpn
Bt δt

dqn
dt

` Bpn
BH δH

dqn
dt

´ δH ´H
dδt

dt

˙
dt “ 0,

which – after applying integration by parts to the terms containing time derivatives of
varied quantities, using Bpn

Bqn
“ 0 and reordering the terms – yields

ż t1

t0

ˆ n´1ÿ

i“1

”
δpi

!dqi
dt

` Bpn
Bpi

dqn
dt

)
` δqi

!Bpn
Bqi

dqn
dt

´ dpi
dt

)ı
(2.6.21)

` δt
!Bpn

Bt
dqn
dt

` dH

dt

)
` δH

!Bpn
BH

dqn
dt

´ 1
)˙

dt “ 0.

As Equation (2.6.21) has to hold for any variation of the trajectory, all terms in curly
braces have to vanish. This gives the new equations of motion

dqi
dqn

“ ´Bpn
Bpi

,
dpi
dqn

“ `Bpn
Bqi

,
dH

dqn
“ ´Bpn

Bt and
dt

dqn
“ `Bpn

BH . (2.6.22)

These have the structure of Hamilton’s equations of motion, where qn is the independent
variable, ´pn is the Hamiltonian, and q1, . . . qn´1,H are the new canonical coordinates
and p1, . . . , pn´1, t are their conjugate momenta [58].

2.6.5 Accelerator Hamiltonian with Independent Coordinate s

As we have seen, by choosing Qs ” s as the new independent coordinate, ´Ps becomes
the new Hamiltonian. Solving Equation (2.6.17) for Ps gives

Ps “ eA˚
s ` p1 ´Qxκq

c
pH˚ ´ eφ˚q2

c2
´ pPx ´ eA˚

xq2 ´
`
Py ´ eA˚

y

˘2 ´m2c2, (2.6.23)

so that the new Hamiltonian K “ ´Ps in the Frenet–Serret coordinate system, with s
as the independent variable, is

K “ ´Ps “ Qxκ ´ 1

c

b
pH ´ eφq2 ´ c2 pPx ´ eAxq2 ´ c2 pPy ´ eAyq2 ´m2c4 ´ eAs,

(2.6.24)
where we have – for the sake of simpler notation – replaced all starred symbols by their
un-starred variants. All those symbols now shall refer to the respective quantities inside
the Frenet–Serret coordinate system. The new canonical coordinates are Qx, Qy, and
H, with the respective conjugate momenta Px, Py, and t and we write

z ” pQx, Px, Qy, Py, H, tqT . (2.6.25)

For the further investigation, it is helpful to introduce some auxiliary symbols. We
define the total energy E and kinetic energy T of a particle as

E ” H ´ eφ and T ” E ´mc2 (2.6.26)

and its total momentum p via
c2p2 ” E2 ´mc2. (2.6.27)

It needs to be stressed that the quantities introduced above are neither canonical vari-
ables, nor are they integrals of motion.
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2.6.6 Typical Accelerator Physics Coordinates

While the canonical coordinates with the conjugate pairs pQx, Pyq, pQy, Pyq and pH, tq,
which were used above, provide a complete description of the dynamics in a particle
accelerator, beam dynamics is usually formulated in different sets of coordinates. Until
now, the orbit rpsq was an arbitrary path through configuration space. Especially, it
did not necessarily fulfill any kind of equations of motion. In typical coordinates used in
accelerator physics, this orbit is now considered to be the trajectory of what is referred
to as a reference particle. Further, the transverse momenta are normalized, for instance
to the longitudinal momentum of the individual particle or the total momentum of the
reference particle, which enables the expansion of the Hamiltonian around small values
of the resulting normalized momenta. A multitude of different coordinates, which can be
derived from the coordinates above, are used in literature and in simulation codes. In the
following, a selection of the most regularly encountered coordinates is briefly presented
without rigorous derivations. In Appendix A, a less well-known set of coordinates is
defined, which is applicable when the electromagnetic potentials fulfill a condition on
their curl with respect to their transverse and time dependence.

2.6.6.1 Conventional Coordinates

In textbooks [54,55,59], regularly the coordinates
ˆ
x ” Qx, px ” Px

P0

, y ” Qy, py ” Px

P0

, τ ” s

β0
´ ct, δ ” H

cP0

´ 1

β0
“ H ´ E0

cP0

˙

(2.6.28)
are encountered, where P0 and E0 are the total momentum and total energy of the ref-
erence particle and it is β0 ” cP0

E0
. Here, τ takes the notion of the path-length distance

of a particle to the reference particle and the coordinate δ is its relative energy devia-
tion. Explicit derivation of these coordinates via a generating function shows that the
Hamiltonian picks up a new term δ{β0 due to the dependence of the τ coordinate on the
independent variable s. The new Hamiltonian reads

Kconv “ δ

β0
´ eAs

P0

(2.6.29)

` pQxκ´ 1q
dˆ

1

β0
` δ ´ eφ

P0c

˙2

´
ˆ
px ´ eAx

P0

˙2

´
ˆ
px ´ eAx

P0

˙2

´ 1

β20γ
2
0

.

These are the coordinates used in the accelerator simulation and design programMAD8 [60].

2.6.6.2 Rose-Hoffstätter and COSY INFINITY Coordinates

Another set of useful coordinates is used by Rose and Hoffstätter [61] and in the beam
physics code COSY INFINITY [62]. These coordinates are defined by

ˆ
Qx, a ” Px

P0

, Qy, b ” Py

P0

, τ ” ´rt´ t0psqsT0
P0

, η ” T ´ T0

T0

˙
, (2.6.30)

where T0 is the kinetic energy of the reference particle.

2.6.6.3 Coordinates used in elegant

In the particle tracking code elegant the coordinates
˜
Qx,

x1p1 ` δqa
1 ` x12 ` y12

, Qy,
y1p1 ` δqa
1 ` x12 ` y12

, s ” βct, δ ” P ´ P0

P0

¸
(2.6.31)
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are used [63]. The primed variables x1 and y1 refer to the transverse slopes of the particle
trajectories, which are defined by x1 ” Px{Ps and y1 ” Py{Ps and β “ cp

E
.

2.6.6.4 Unscaled Coordinates

Especially when investigating parts of the beam line in which the beam is accelerated,
it can be convenient to work in the unscaled coordinates defined by
ˆ
x ” Qx, px ” Px, y ” Qy, py ” Px, z ” s

β0
´ ct, E ” H ´ E0

˙
. (2.6.32)

In these coordinates, the canonical momenta px, py, and E do not require rescaling,
when the reference momentum P0 changes.

2.6.7 Paraxial Approximation

In its complete form (2.6.29), the accelerator Hamiltonian yields intricate equations of
motion, which generally cannot be solved analytically. As the normalized transverse
momenta px, py, the transverse displacement x,y, and the energy deviation δ are usually
small, it is justified to assume that the principle dynamics of the system are preserved
if the kinematic part of the Hamiltonian is expanded to second order in these variables.
This is called the paraxial approximation. In a section with vanishing electric potential,
the Hamiltonian expanded to second order in this way, reads

Kconv,2 “ κx` 1

2

ˆ
px ´ eAx

P0

˙2

` 1

2

ˆ
py ´ eAy

P0

˙2

` 1

2β20γ
2
0

δ2 ` κ

β0
xδ ´ eAs

P0

. (2.6.33)

2.6.8 Magnetic Potentials of Common Magnets

Magnetic elements typically encountered in most particle accelerators include dipole
magnets, used for steering the beam; quadrupole magnets, which provide transverse
focusing; and sextupole magnets, which provide chromatic correction. These magnets
belong to a class of magnets for which a gauge fixing exists so that the scalar potential
and the transverse components of the vector potential vanish: φ “ Ax “ Ay “ 0. In this
case, the magnetic fields are fully determined by the longitudinal component As of the
vector potential.

In the laboratory system, the longitudinal magnetic potential of a dipole magnet
whose magnetic fields B points in the y-direction is given by

As “ ´Bx (upright) As “ ´By (skew). (2.6.34)

It can be shown that in the Frenet–Serret frame this potential reads [55]

A˚
s “ ´B p1 ´ κxq

ˆ
x` 1

2

κx2

1 ´ κx

˙
“ ´B

ˆ
x´ 1

2
κx2

˙
. (2.6.35)

For an upright or skew quadrupole magnet with magnetic gradient G, the potential reads

As “ G

2
py2 ´ x2q (upright) As “ Gyx (skew). (2.6.36)

Upright sextupole magnets produce a potential of the form

As “ S

ˆ
1

2
xy2 ´ 1

6
x3
˙
, (2.6.37)

where S is the sextupole strength parameter [14]. See Figure 2.1 for a plot of the these
potentials.
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Figure 2.1: Equipotential lines of the longitudinal magnetic potential of common beam-
line elements.

2.6.9 Linear Maps of Common Beamline Elements

In many cases, it is expedient to consider a beamline as a sequence of elements in which
the electromagnetic potentials are piecewise constant. This is known as the sharp-cutoff
(SCOFF) approximation. Using this approximation allows to derive solutions of the
equations of motion for each beamline element separately in form of a map. The solution
of the whole beamline is then given as the composition of the maps of its constituent
elements.

Assuming vanishing electric and transverse magnetic potentials, the second order
Hamiltonian (2.6.33) yields the general equations of motion

dz

ds
“ J6

ˆ
κ` κ

β0
δ ´ e

P0

BAs

Bx , px, ´ e

P0

BAs

By , py, 0,
κ

β0
x` 1

β20γ
2
0

δ

˙T

, (2.6.38)

where z are the coordinates defined in Equation (2.6.28). It can be seen that if also As

is expanded to second order in the transverse coordinates, Equation (2.6.38) defines an
affine-linear ordinary differential equation.

2.6.9.1 Drift Space

A drift space is a straight section of the beamline in which all electromagnetic potentials
vanish. With κ “ Ax “ Ay “ As “ 0, the second order Hamiltonian (2.6.33) yields the
equations of motion

dz

ds
“ J6

ˆ
0 0
0 1

˙
‘
ˆ
0 0
0 1

˙
‘
˜
0 0
0 ` 1

β2

0
γ2

0

¸
z (2.6.39)

“
ˆ
0 1
0 0

˙
‘
ˆ
0 1
0 0

˙
‘
˜
0 ` 1

β2

0
γ2

0

0 0

¸
z ” dpγ0qz. (2.6.40)

As dpγ0q is a second-order nilpotent matrix, the transfer map of a drift space of length
l is given by

z ÞÑ r16 ` ldpγ0qsz ” Dpl, γ0qz. (2.6.41)

In the ultra-relativistic limit, pβγq´2 Ñ 0, this becomes

z ÞÑ
”
16 ` ld̂

ı
z ” D̂plqz, (2.6.42)

where

d̂ “
ˆ
0 1
0 0

˙
‘
ˆ
0 1
0 0

˙
‘
ˆ
0 0
0 0

˙
. (2.6.43)
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2.6.9.2 Upright Bend Magnet

In an upright bend magnet, the curvature is non-zero and the longitudinal magnetic
potential is given by Equation (2.6.35), which reads

As “ ´B0

´
x´ κ

2
x2
¯
. (2.6.44)

This yields the equations of motion

dz

ds
“ J6

ˆ
κ` κ

β0
δ ` eB0

P0

p1 ´ κxq, px, 0, py, 0,
κ

β0
x` 1

β20γ
2
0

δ

˙T

. (2.6.45)

Note that until now the only assumption that was made about the orbit is that its
torsion is zero and it lies in the x-plane. Apart from that, the choice of the orbit was
completely arbitrary. From equation (2.6.45) it can be seen, that it is sensible to choose
the trajectory of a particle with reference momentum P0 as the orbit through a dipole.
By choosing the curvature of the reference trajectory to be equal to the curvature of the
reference particle κ “ ´eB0{P0, the equation becomes linear

dz

ds
“ J6

¨
˚̊
˚̊
˚̊
˚̋

κ2 0 0 0 0 κ
β0

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
κ
β0

0 0 0 0 1
β2

0
γ2

0

˛
‹‹‹‹‹‹‹‚
z “

¨
˚̊
˚̊
˚̊
˚̋

0 1 0 0 0 0
´κ2 0 0 0 0 ´ κ

β0

0 0 0 1 0 0
0 0 0 0 0 0
κ
β0

0 0 0 0 1
β2

0
γ2

0

0 0 0 0 0 0

˛
‹‹‹‹‹‹‹‚
z ” bpγ0, κqz.

(2.6.46)
Hence, the transfer map of a dipole magnet is

z ÞÑ expplbpγ0, κqqz ” Bpγ0, κq, (2.6.47)

where l is the arc length of the trajectory in the magnet. The matrix B indeed can be
expressed in closed form [64]:

Bpl, κ, γ0q ”

¨
˚̊
˚̊
˚̊
˚̊
˝

cosplκq sinplκq
κ

0 0 0 1´cosplκq
β0κ

´κ sinplκq cosplκq 0 0 0 sinplκq
β0

0 0 1 l 0 0
0 0 0 1 0 0

´ sinplκq
β0

´1´cosplκq
β0κ

0 0 1 l
β2

0
γ2

0

´ 1
β0

´
l ´ sinplκq

β0κ

¯

0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‹‚

. (2.6.48)

In the ultra-relativistic limit this matrix becomes

B̂pl, κq ”

¨
˚̊
˚̊
˚̊
˚̋

cosplκq sinplκq
κ

0 0 0 1´cosplκq
κ

´κ sinplκq cosplκq 0 0 0 sinplκq
0 0 1 l 0 0
0 0 0 1 0 0

´ sinplκq ´1´cosplκq
κ

0 0 1 sinplκq
κ

´ l

0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‚
. (2.6.49)

In some cases, it is however more appropriate to treat a dipole in the so-called thin-
lens approximation. In this approximation, the bend radius R “ κ´1 is considered to be
much larger than the path length of the orbit in the dipole magnet l. This approximation

45



can be constructed by taking the limit l Ñ 0 of lb, while keeping terms proportional to
lκ constant. The resulting matrix

lbtl ” lim
lÑ0

lκ“const.

lb “ l

¨
˚̊
˚̊
˚̊
˚̋

0 0 0 0 0 0
´κ2 0 0 0 0 ´ κ

β0

0 0 0 0 0 0
0 0 0 0 0 0
κ
β0

0 0 0 0 0

0 0 0 0 0 0

˛
‹‹‹‹‹‹‹‚

(2.6.50)

is second-order nilpotent, so that the thin-lens map for a dipole magnet is

z ÞÑ r16 ` lbtlsz ” Btlpβ0, κ, lqz. (2.6.51)

If the bending radius is much larger than the path length in the magnet, we can ap-
proximate lκ2 « 0 and set lκ “ α, where α is the bending angle of the magnet. In this
small-angle approximation, the transfer map is

z ÞÑ r16 ` αβ´1
0 b̂tlsz ” B̂tlpαβ´1

0 qz, (2.6.52)

where

b̂tl “

¨
˚̊
˚̊
˚̊
˝

0 0 0 0 0 0
0 0 0 0 0 ´1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

˛
‹‹‹‹‹‹‚
. (2.6.53)

2.6.9.3 Edge Focusing

If the the orbit is not perpendicular to the pole face of a dipole magnet, electrons on
the side towards which the pole face is inclined are deflected stronger than those on
the opposite side, as they traverse more of the magnetic field. In addition, due to the
magnetic field lines protruding from the pole face, an inclination of the pole face causes a
horizontal field component to appear, which focuses or defocuses the beam in the vertical
plane. This effect is called edge focusing [54]. In linear approximation, the transfer map
of edge focusing is

z ÞÑ
ˆ

1 0
κ tanpαq 1

˙
‘
ˆ

1 0
´κ tanpαq 1

˙
‘
ˆ
1 0
0 1

˙
z ” F pκ, αqz, (2.6.54)

where α is the angle between the orbit and the pole face.

2.6.9.4 Upright Quadrupole

The longitudinal vector potential of an upright quadrupole magnet is given in Equa-
tion (2.6.36), which yields the equations of motion

dz

ds
“ J6

ˆ
´eG

P0

x, px, `eG

P0

y, py, 0,
1

β20γ
2
0

δ

˙T

(2.6.55)

“
ˆ
0 1
k1 0

˙
‘
ˆ

0 1
´k1 0

˙
‘
˜
0 1

β2

0
γ2

0

0 0

¸
z ” qpγ0, k1qz, (2.6.56)
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where we introduced the quadrupole-strength parameter k1 ” eG{P0. The exact solution
of Equation (2.6.56) for a thick quadrupole of length l is

z ÞÑ R̂2

´
l,
a
k1

¯
‘ R̂2

´
l,
a

´k1
¯

‘
˜
1 l

β2

0
γ2

0

0 1

¸
z ” Qpγ0, k1, lqz, (2.6.57)

where R̂2 : R ˆ C Ñ R2ˆ2 is the scaled rotation matrix

R̂2px, yq “
ˆ

cospxyq 1
y
sinpxyq

´y sinpxyq cospxyq

˙
. (2.6.58)

Also for a quadrupole, a thin-lens approximation can be constructed from Equation (2.6.56)
by keeping only those terms in q that depend on the strength parameter

q
tl

”
ˆ
0 0
k1 0

˙
‘
ˆ

0 0
´k1 0

˙
‘
ˆ
0 0
0 0

˙
, (2.6.59)

which yields the thin-lens map

z ÞÑ r16 ` lq
tl

pk1qsz ” Q
tl

pk1, lqz. (2.6.60)

47



48



3 Single-Particle Dynamics in High-Gain

FEL Injectors

High-energy electron bunches with a high current density are required to drive the radi-
ation generation process in a high-gain free-electron laser. Accelerating electron bunches
to the required energy, compressing them to the required current density and measuring
and controlling the bunch quality, is the task of a linear accelerator section upstream of
the FEL undulator beamlines, commonly referred to as the injector. The injector is to
a large extent responsible for the quality of the bunches in the undulator.

Acceleration is achieved by means of radio-frequency (RF) cavities. Within these
cavities, an electron gains or loses energy due to the interaction with an electro-magnetic
wave, depending on the phase of the wave. In addition to the overall acceleration of the
bunch, RF cavities are used to imprint a correlation between the longitudinal position
of an electron within the bunch and its energy. This so-called energy chirp, or correlated
energy spread, is necessary to compress the beam in magnetic chicanes.

Magnetic chicanes consist of a series of dipole magnets that deflect the beam so
that the orbit in the chicane deviates from a straight. Typical choices for the chicane
geometry include C-type chicanes, see Figure 3.1, and less commonly S-type chicanes,
in which the orbit resembles the shape of the letters C and S, respectively. The working
principle of a magnetic chicane is based on the fact that in a bending magnet a particle
with a lower energy is deflected stronger than a particle with higher energy. As a result,
the path length of the trajectory of a low-energy particle through the chicane is longer
than that of a higher-energy particle. This dependence of the path length on the energy
is called longitudinal dispersion. Together with the chirp imprinted by the RF cavities
the longitudinal dispersion generated in the magnetic chicanes results in a compression
of the bunch. Bunch compression is crucial for the operation of an FEL, as the maximum
bunch current that can be produced directly by the electron source – while preserving a
good bunch quality – is limited.

As described in Section 1, compressing the bunch to its final current density in a
single strong chicane is usually not viable, due to degrading effects caused by the con-
sequently intense synchrotron radiation. Many facilities therefore implement a staged
bunch compression scheme, where multiple compression stages consisting of an acceler-
ation section and a subsequent chicane are staged one after another.

Typically, the magnetic lattice of an FEL injector is designed without coupling be-
tween the dynamics in the two transverse planes. Non-linear magnetic elements, such
as for instance sextupoles, are typically avoided and are therefore not discussed here.
Hence, the principle transverse dynamics can be described to good approximation by
the optical functions defined in the linear transverse uncoupled theory.

In the following, we describe the function of the different beamline elements. The
results are used to motivate a one-dimensional ultra-relativistic model of the longitudinal
dynamics, which is used to investigate the microbunching instability.
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3.1 Radio-Frequency Cavity

When a particle traverses an electric field with a component parallel to its direction
of motion, its kinetic energy changes. In particular, an electron – being a negatively
charged particle – experiences a positive energy gain when it traverses an electric field
that is anti-parallel to its direction of motion. Hence, electric fields anti-parallel to the
longitudinal direction of the orbit are required to accelerate electron bunches in an FEL
injector. From first principles it can be seen that the maximum gradient achievable in
electrostatic fields is limited due to electrical breakdown effects. Higher gradients can
be achieved by employing time-dependent fields. These can be generated in resonant
radio-frequency (RF) cavities [54].

The amount of energy a particle gains in an RF-cavity depends on the amplitude and
the phase φ of the RF-field when the particle enters the cavity. As this phase varies in
time, the energy gain depends on the arrival time of the particle at the cavity. Therefore,
the energy gain can be modeled by

∆E “ eVcav cospkcavτ ` φ0q, (3.1.1)

where Vcav is the effective cavity voltage, the wave number kcav is given via the cavity
frequency kcav “ 2πfcav{c, and φ0 is the phase of the rf-field when the reference particle
enters. Using the unscaled coordinates (2.6.32), the transfer map of a rf-cavity is then
given by ˆ

z

E

˙
ÞÑ

ˆ
z

E ` eVcavrcospkcavz ` φ0q ´ cospφ0qs

˙
(3.1.2)

and the reference energy changes according to

E0 ÞÑ E0 ` cospφ0q. (3.1.3)

For simplicity, this model neglects the fact that the amplitude of the rf-field depends on
the transverse position and omits the treatment of rf-wakefields. In the linear approxi-
mation this map reads

ˆ
z

E

˙
ÞÑ

ˆ
1 0

´eVcav sinpφ0q 1

˙ˆ
z

E

˙
. (3.1.4)

In the transverse planes, an rf-cavity has a focusing effect [65, 66], which has to be
taken into account when calculating the optical functions of the lattice. In fact, the
electro-magnetic wave in an rf-cavity is not a plane wave, so that its amplitude depends
on the distance to the central axis of the cavity. In principle, the energy gain of a
particle therefore depends on its transverse position when traversing the cavity. However,
typically the transverse extent of the electron bunch is sufficiently small compared to
the transverse scale of the rf-field so that the variation of the rf-amplitude within the
bunch is negligible.

3.2 Drift Space

The longitudinal component of the transfer map of a drift space of length l is given by

D :

ˆ
z

E

˙
ÞÑ

˜
1 l

β2

0
γ2

0
E0

0 1

¸ˆ
z

E

˙
, (3.2.1)
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which in the ultra-relativistic limit γ0 Ñ 8 approaches the identity map. When analyz-
ing the microbunching instability, we investigate phase-space densities with a modulation
of the energy coordinate

Ψ0pz,Eq “ αf pE ´A cos p2πz{λqq , (3.2.2)

where f : R Ñ R is the energy distribution function, α P R
` is a normalization constant

and A P R
` is the amplitude of the modulation at a wavelength λ P R

`. After a drift of
length l the PSD is then reads

Ψ1 “ DΨ0 “ αfpE ´A cosp2πz{λ ´ ΩEqq, (3.2.3)

where we defined Ω ” 2πl
β2

0
γ2

0
E0λ

. Expanding Ψ1 around Ω “ 0 gives

Ψ1 “ Ψ0 ´ αAΩE sinp2πz{λqf 1pE ´A cosp2πz{λqq `OpA2Ω2q. (3.2.4)

We now consider the norm } ¨ } “
ş
R

| ¨ |dE of a slice of the PSD at a fixed z position.
This yields an upper bound for the relative deviation of the new PSD from the initial
PSD:

α´1}Ψ1 ´ Ψ0} ď |AΩ|}Ef 1pE ´A cosp2πz{λqq} `OpA2Ω2q. (3.2.5)

It can be seen that

}Ef 1pE ´A cosp2πz{λqq} “ }pE `A cosp2πz{λqqf 1pEq} (3.2.6)

ď }Ef 1pEq} `A}f 1pEq}. (3.2.7)

In case of a Gaussian energy distribution fpEq “ 1{
b

2πσ2E exp p´1
2
x2{σ2Eq, we get

}f 1pEq} “
d

2

πσ2E
and }Ef 1pEq} “ 1. (3.2.8)

Therefore, the modulation is approximately preserved if

2πlA

β20γ
2
0λE0

˜
A

σE

c
2

π
` 1

¸
! 1. (3.2.9)

In a typical scenario the modulation amplitude is in the order of the energy spread but
much less than the central energy of the beam. Estimating, for instance, A{σE « 1,
A{E0 « 10´4 and β20γ

2
0 « 106 the condition on the wavelength becomes λ " 10´10l.

Therefore, in this parameter regime, wavelengths larger than 1 nm are preserved in a
1m drift space. As the microbunching instability typically occurs at wavelengths in the
order of a few micrometer, the condition (3.2.9) is usually fulfilled for all wavelengths
that could be amplified by instability. In that case, for the purpose of investigating the
microbunching instability, the longitudinal single-particle transport map of a drift space
can be approximated by the identity map.

3.3 C-Type Magnetic Chicane

A magnetic chicane is typically laid-out as depicted in Figure 3.1. Four dipole magnets
bend the orbit of the beam into a C-shaped trajectory. As the bending angle of a particle
depends on its energy, also the path length a particle covers while traversing is energy
dependent. To quantify this effect, we derive the linear transfer map of the chicane in
this section. Special attention is paid to the M56 component of the transfer matrices,
as it determines the coupling between the energy and the longitudinal coordinate of a
particle. A more detailed discussion of this topic can be found in reference [67].
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3.3.1 Thin-Lens Approximation

In the thin-lens approximation, the transfer map between the entrance of the first dipole
magnet and the position a distance d after the second magnet is

z ÞÑ M ” D̂tlpdqB̂tlp´αqD̂tlplqB̂tlpαqz, (3.3.1)

where l is the length of the drift space between the two magnets. Explicit calculation
yields

M “

¨
˚̊
˚̊
˚̊
˝

1 l ` d 0 0 0 ´α l
0 1 0 0 0 0
0 0 1 l ` d 0 0
0 0 0 1 0 0
0 ´α l 0 0 1 α2 l

0 0 0 0 0 1

˛
‹‹‹‹‹‹‚
. (3.3.2)

For the transverse plane, it can be seen that this section of the chicane acts as a drift
space but with an additional term coupling the energy to the displacement in the bending
plane of the magnets. This effect is called transverse dispersion and is quantified by the
term

M 16 “ ´αl. (3.3.3)

It can be seen that this map features coupling between the transverse and longitudinal
planes. There is a non-vanishing M 56 component given by

M56 “ α2l. (3.3.4)

This term means that an energy deviation will cause a shift of the longitudinal coordinate
of the particle. This effect is typically referred to as longitudinal dispersion. In particular,
the M56 is positive independent on the sign of the bending angle. Hence, a positive
energy deviation will cause an increase in the longitudinal coordinate and vice versa.
Further, there is an M52 “ ´αl component, which quantifies how much an momentum
deviation of a particle in the bending plane affects the longitudinal coordinate.

The transfer map of the whole chicane is given by

z ÞÑ M ” B̂tlpαq D̂tlplq B̂tlp´αq D̂tlplcq B̂tlp´αq D̂tlplq B̂tlpαqz, (3.3.5)

where lc is the length of the drift space between the inner magnets. Calculating M

explicitly yields

M “

¨
˚̊
˚̊
˚̊
˝

1 2 l ` lc 0 0 0 0
0 1 0 0 0 0
0 0 1 2 l ` lc 0 0
0 0 0 1 0 0
0 0 0 0 1 2α2 l

0 0 0 0 0 1

˛
‹‹‹‹‹‹‚
. (3.3.6)

As can be seen, the coupling between the transverse and longitudinal planes vanishes.
This shows that a symmetric C-type chicane induces no transverse dispersion. Hence,
in the thin-lens approximation, the only component that distinguishes a chicane from a
drift space is the non-zero longitudinal dispersion given by

M56 “ 2α2l. (3.3.7)

We may add that in the non-relativistic case, additional longitudinal dispersion occurs
due to velocity effects, which is quantified by the term

M56 “ 2l ` lc

β20γ
2
0

. (3.3.8)
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Figure 3.1: Trajectories of particles with different momenta traversing a C-shaped
magnetic chicane. The bend radius of the particle with the trajectory marked with
the solid line is 1.5 times the length of a bend magnet, represented by the rectangles.
The momenta of the dashed and dotted trajectories differ from the solid trajectory by
´10% and 10%, respectively. Markers are plotted at equidistant path lengths along each
trajectory.

3.3.2 Thick Bend Magnets

Using the transfer matrix (2.6.49) for the thick bend magnets and including edge focusing
effects given by (2.6.54), the transfer map of a C-shaped chicane with bending angle
α ” sBκ is in the ultra-relativistic limit given by

z ÞÑ Mz ”B̂psB, κqF pκ, αq D̂psDqF p´κ,´αq B̂psB ,´κq D̂psCq
B̂psB,´κqF p´κ,´αq D̂psDqF pκ, αq B̂psB, κqz, (3.3.9)

where sB, sD, and sC , are the path lengths of the trajectory within a bend magnet,
between the first two and last two magnets, and between the inner magnets, respectively.
Executing the matrix multiplication yields

M “
˜
1 4 tanpαq

κ
` 2 sD

cospαq2
` sC

0 1

¸
‘
ˆ
1 4sB ` 2sD ` sC
0 1

˙

‘
ˆ
1 4 tanpαq´α

κ
` 2sD tanpαq2

0 1

˙
. (3.3.10)

This shows that the transverse dispersion vanishes, even when the bend magnets are
treated as thick elements. The longitudinal dispersion coefficient of the thick-magnet
chicane is

M56 “ 4
tanpαq ´ α

κ
` 2sD tanpαq2. (3.3.11)

It is noteworthy that the longitudinal dispersion does not increase monotonically
throughout the chicane. Figure 3.2 shows an example of the evolution of the M56

coefficient in dependence on the path length in a chicane of typical dimensions. As can
be seen, the longitudinal dispersion decreases in the first bend magnet. From the transfer
matrix of a single bend magnet (2.6.49) in the ultra-relativistic limit, it can be seen that
the longitudinal dispersion of a single bend magnet is indeed negative, independent on
its bending radius and length. Only in the inner two magnets the dispersion increases,
with the total increase being distributed equally between the two. Finally, in the last
magnet, the M56 decreases by the same amount as in the first magnet of the chicane.
In the drift spaces between the magnets, the longitudinal dispersion is constant.
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Figure 3.2: Evolution of the M56 through a C-shaped chicane. The bending angle is
α “ 16˝ and the path length in the magnets as well as in all drift spaces between the
magnets is 0.5m. Positions of the magnets are indicated by the boxes at the top of the
graph.

3.4 Linear Bunch Compression

After introducing the longitudinal dynamics in an rf-cavity and a magnetic chicane,
we now investigate how the combination of both can be used to compress an electron
bunch. To that end, we use the unscaled longitudinal coordinates z “ pq, pqT ” pz,EqT
as defined in (2.6.32).

In the linear approximation, a series of consecutive rf-cavities act as a kick map

z ÞÑ Kphqz ”
ˆ
1 0
h 1

˙
z. (3.4.1)

on the longitudinal coordinates. The quantity h is commonly referred to as the chirp
induced by the cavity. It depends on the amplitude and phase settings of the cavity.

A magnetic chicane acts as a drift map

z ÞÑ Dpβqz ”
ˆ
1 β

0 1

˙
z, (3.4.2)

which shears the beam in the longitudinal direction. We define the shearing parameter β,
which is given by the longitudinal dispersion of the chicane in conventional coordinates
M56 normalized to the reference momentum of the beam

β ” M56

c P0

. (3.4.3)

Wherever confusion with the relativistic quantity βrel ” v{c is possible, the symbol βrel
is used to resolve the ambiguity. The optical beta functions are denoted with βx and βy.

In total, the effect of a single bunch compression stage, consisting of an accelerating
section followed by a magnetic chicane, is therefore given by

Mph, βq : z ÞÑ Mph, βqz ” DpβqKphqz “
ˆ
1 ` hβ β

h 1

˙
z. (3.4.4)

Unfortunately, in this form of the map, some important pieces of information about the
dynamics are not directly accessible. In particular, the amount of compression a bunch
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experiences cannot directly be inferred from M . Further, the total amount of shearing,
which plays an important role for the microbunching instability, is obscured. A more
revealing form of the matrix can obtained by writing M as the product of a symplectic
lower-triangular matrix, a symplectic diagonal matrix, and a symplectic upper-triangular
matrix. It can be seen that such a symplectic LDU decomposition of M is given by

Mph, βq “
ˆ

1 0
Ch 1

˙ˆ
C´1 0
0 C

˙ˆ
1 Cβ

0 1

˙
(3.4.5)

“ KpChqSpCqDpCβq, (3.4.6)

where we introduced the compression factor C ” p1`hβq´1, and the symplectic scaling
matrix

SpCq ”
ˆ
C´1 0
0 C

˙
. (3.4.7)

From this decomposition, it becomes clear that the effect of a bunch compression stage on
an initially unchirped bunch can be understood more intuitively as a three-step process:

Firstly, the bunch is sheared via the drift map given by the matrix DpCβq. This
step is particularly important for microbunching considerations, because this shearing
is what drives the conversion of inhomogeneities of the energy distribution into charge-
density inhomogeneities. We note that the magnitude of the shearing effect is given by
the product of the longitudinal dispersion of the chicane and the compression factor.
This shows that compression enhances the amount of shearing a bunch experiences.

Next, the bunch is compressed in a measure-preserving manner via the scaling map
S : z ÞÑ SpCqz. If |C| ą 1, this implies that the bunch becomes shorter, while simul-
taneously its energy distribution is broadened. It can be seen that such a symplectic
scaling of an initial phase-space distribution Ψ0 results in an increase of the local charge
density by a factor C

ρ1pqq “
ż

R

SpCqΨ0pq, pqdp “
ż

R

Ψ0pC q, p{Cqdp (3.4.8)

“ C

ż

R

Ψ0pC q, pqdp “ Cρ0pC qq. (3.4.9)

We see that this is the step in which the actual compression of the bunch occurs.

Lastly, an energy chirp Ch is imprinted on the bunch via the kick matrix KpChq.
For microbunching considerations this step is of no immediate importance, as it does not
affect the longitudinal position of the particles, so that the charge density is conserved.

3.4.1 Initially Chirped Bunch

Consider a bunch with initial phase-space density Ψ0 and covariance matrix

Σ0 “
ˆ

xq2y xqpy
xqpy xp2y

˙
, (3.4.10)

where x¨y denotes the expected value with respect to Ψ0. Diagonalizing this covariance
matrix yields

Σ0 “
˜

1 0
xqpy
xq2y

1

¸˜
xq2y 0

0 xp2y ´ xqpy2

xq2y

¸˜
1 xqpy

xq2y

0 1

¸
(3.4.11)

“ Kph0qdiag
`
xq2y, xp2y ´ h0xqpy

˘
Kph0qT, (3.4.12)
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where we have introduced the initial chirp of the bunch h0 ” xqpy
xq2y

. We see that the

general covariance matrix of a bunch with an position-energy correlation xqpy is therefore
equivalent to that of an initially uncorrelated bunch that was propagated by a linear
kick map with magnitude h0. The quantity xp2y ´h0xqpy is commonly referred to as the
uncorrelated energy spread of the bunch. In this form it is immediately apparent how a
general covariance matrix is propagated by a bunch compression stage. Using M in the
form of Equation (3.4.4) ,we see that

Σ0 ÞÑ Mph, βqΣ0Mph, βqT (3.4.13)

“ DpβqKphqKph0qdiag
`
xq2y, xp2y ´ h0xqpy

˘
Kph0qTKphqTDpβqT (3.4.14)

“ DpβqKph ` h0qdiag
`
xq2y, xp2y ´ h0xqpy

˘
Kph` h0qTDpβqT (3.4.15)

“ Mph ` h0, βqdiag
`
xq2y, xp2y ´ h0xqpy

˘
Mph ` h0, βqT. (3.4.16)

This shows that the final covariance matrix after a bunch compression stage can be
calculated by transferring the initial chirp of the bunch to the chirp induced by the
acceleration stage and propagating the uncorrelated diagonal covariance matrix via the
resulting transfer matrix.

3.4.2 Two-Stage Compression

In many facilities the total required compression of the bunch is not achieved in a single
compression stage, but is distributed over typically two or three stages. The transfer
matrix of a two-stage setup is

M2Ð0 “ Mph2, β2qM ph1, β1q. (3.4.17)

By writing the transfer matrix of the first stage in the LDU form given in Equation (3.4.6)
and writing the matrix of the second stage in the form shown in Equation (3.4.4) we get

M2Ð0 “ Dpβ2qKph2qKpC1h1qSpC1qDpC1β1q (3.4.18)

“ Dpβ2qKph2 ` C1h1qSpC1qDpC1β1q (3.4.19)

“ Mph2 `C1h1, β2qSpC1qDpC1β1q. (3.4.20)

By introducing the total chirp
h˚
2 ” h2 `C1h1 (3.4.21)

and the effective compression
C˚
2 ” p1 ` h˚

2β2q´1 (3.4.22)

of the second stage and employing again the LDU decomposition of Mph˚
2 , β2q, we see

that M2Ð0 can be written as two pairs of drift and scale maps, followed by a single kick
map

M2Ð0 “ Mph˚
2 , β2qSpC1qDpC1β1q (3.4.23)

“ KpC˚
2 h

˚
2qSpC˚

2 qDpC˚
2 β2qSpC1qDpC1β1q. (3.4.24)

Note that we introduced the notion of the effective compression of the second stage C˚
2 to

differentiate it from what could be called the individual compression C2 ” p1`h2β2q´1.
The effective compression is the total compression occurring in the stage – this depends
on the total chirp of the bunch, including the contribution to the chirp from the previous
stage. On the other hand, the individual compression would be the compression produced
by the stage, if the bunch had no initial chirp at the beginning of the stage.

56



It can be seen that for any two pairs of scale- and drift maps the identity

SpC2qDpβ2qSpC1qDpβ1q “
˜

1
C1C2

β1`C2

1
β2

C1C2

0 C1C2

¸
“ SpC1C2qDpβ1 ` C2

1β2q (3.4.25)

holds. Hence, we arrive at the convenient result that also a two-stage transfer map can
be written in LDU-form

M2Ð0 “ KpC˚
2 h

˚
2qSpC˚

2C1qDpC1β1 ` β2C
˚
2C

2
1q. (3.4.26)

3.4.3 Multi-Stage Compression

The strategy we used to derive the two-stage transfer matrix can be generalized to an
n-stage compression setup

MnÐ0 ”
nź

i“1

M phi, βiq “
nź

i“3

Mphi, βiqM ph2, β2qM ph1, β1q (3.4.27)

“
nź

i“3

M phi, βiqM ph˚
2 , β2qSpC˚

1 qDpC˚
1 β1q (3.4.28)

“ Mph˚
n, βnq

n´1ź

i“1

SpC˚
i qDpC˚

i βiq “ KpC˚
nh

˚
nq

nź

i“1

SpC˚
i qDpβ˚

i q, (3.4.29)

where the effective kick-, compression- and drift-parameters of the ith stage are given
by

h˚
i ” hi ` C˚

i´1h
˚
i´1, C˚

i ” p1 ` h˚
i βiq´1 and β˚

i “ C˚
i βi (3.4.30)

respectively, for i ą 0. By defining C0 ” 1, the initial chirp of the bunch before the
first compression stage is given by h˚

0 . The scale- and drift-maps in the product can be
concatenated pairwise as shown before. By introducing the quantities

h:
n “ C˚

nh
˚
n, C:

n ” C˚
nC

:
n´1 “

nź

i“1

C˚
i , and β:

n ” β
:
n´1 ` C

: 2
n´1β

˚
n, (3.4.31)

which define the total kick-, compression and drift-parameters, the product can be writ-
ten as a single scale- and drift-map:

MnÐ0 “ K
`
h:
n

˘
S
`
C:
n

˘
D
`
β:
n

˘
. (3.4.32)

3.4.4 Dechirped Frame

We see from Equation (3.4.29) that the longitudinal transfer matrix of an n-stage com-
pression setup can be expressed as series of n pairs of drift and scale matrices followed by
a single kick matrix. For many studies, however, the total chirp of the bunch, which is
induced by this final kick matrix, is not particularly relevant. In particular with regard
to numerical simulations, a strong chirp can make it difficult to represent a phase-space
density efficiently on a numerical grid. Therefore, it can be useful to study the longi-
tudinal dynamics using the dechirped frame. In this frame, the linear chirp after each
stage is removed by concatenating a compensating kick matrix to the transfer map

M̄nÐ0 ” Kp´h:
nqMnÐ0 “ SpC:

nqDpβ:
nq. (3.4.33)
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In this dechirped frame, the transfer map between any two stages is just a series of drift
and scale matrices

M̄mÐn “ M̄mÐ0M̄
´1
nÐ0 “

mź

i“n`1

SpC˚
i qDpC˚

i βiq, (3.4.34)

which again could be concatenated into a single scale-drift pair as shown before.

3.5 Non-Linear Longitudinal Dispersion in a Magnetic Chi-

cane

In the linear approximation, the longitudinal dispersion coefficientM 56 can be calculated
via matrix multiplication as shown in Section 3.3. However, the path length through
a magnetic chicane in fact does not decrease exactly linearly with increasing particle
energy. The additional non-linear components of the longitudinal dispersion play an
important role, especially when large compression factors are to be achieved. Compared
to the linear case, it is unfortunately much more challenging to derive the non-linear
coefficients directly from the Hamiltonian formulation of the dynamics. This would
require deriving higher-order maps from the non-linear Hamiltonian, while explicitly
taking into account the edge geometry of the dipole magnets.

Instead, in this section we will follow a different strategy to derive the non-linear
dispersion coefficients. We will derive the analytic expression for the path length of the
orbit through the chicane by purely geometric means. The longitudinal dispersion co-
efficients can then be calculated from the derivatives of that expression with respect to
the particle momentum. A similar approach was used in reference [67] to derive only the
linear dispersion coefficients of a chicane. Below, we expand upon that work by showing
that this approach can also be used to derive the non-linear dispersion coefficients and
that those can can be conveniently expressed in form of a recursion relation. This geo-
metric approach yields closed form expressions for the dispersion coefficients of arbitrary
order.

3.5.1 Bend Magnets

Inside the homogeneous magnetic field of a dipole magnet, the trajectory of a particle
describes a circle with radius

RpP q “ P

eB
, (3.5.1)

where P is the momentum of the beam and B is the magnetic field strength. The path
length of the part of the trajectory inside a rectangular bend magnet depends on the
length lB of the magnet, the bend radius R, and the entrance angle α, see Figure 3.3.
For an arbitrary entrance angle, the exit angle can be seen to be

α1 “ asin

ˆ
lB

R
´ sinpαq

˙
, (3.5.2)

so that the path length is given by

sb “ Rrα ` α1s “ R

„
α ` asin

ˆ
lB

R
´ sinpαq

˙
. (3.5.3)

In particular, a particle that enters or exits the magnet perpendicular to the pole face
will traverse the path length

sBpRq “ R asin

ˆ
lB

R

˙
. (3.5.4)
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Figure 3.3: Illustration of the trajectory of a particle in a rectangular dipole magnet.
Shown are the entrance and exit angles α and α1, the bend radius R, the length lB of
the dipole magnet, and the path length sB. a,b, and d are auxiliary quantities.

Due to a trigonometric function being involved, the path length depends non-linearly
on the particle momentum. In order to quantify the non-linear contributions to the
longitudinal dispersion function, its Taylor expansion around the nominal momentum
P0 is calculated.

For the following discussion, it is convenient to introduce the function fpxq “
x asinpx´1q. Given that d

dx
asinpxq “ p1 ´ x2q´1{2, the first two derivatives of f can

be determined directly

f 1pxq “ asin
`
x´1

˘
´ 1

px2 ´ 1q1{2
and f2pxq “ 1

xpx2 ´ 1q3{2
. (3.5.5)

For the higher-order derivatives, a recurrence relation can be derived. Consider the
function family

F pa, b;xq “ xb
`
x2 ´ 1

˘ a
2 (3.5.6)

where a, b P R. Differentiating with respect to x yields

F 1pa, b;xq “ bF pa, b ´ 1;xq ` aF pa ´ 2, b ` 1;xq (3.5.7)

“ pa` bqF pa ´ 2, b ` 1;xq ´ bF pa ´ 2, b ´ 1;xq. (3.5.8)

The nth derivative F pnq is therefore given by the recurrence relation

F pnqpa, b;xq “ pa ` bqF pn´1qpa´ 2, b ` 1;xq ´ bF pn´1qpa´ 2, b ´ 1;xq, n ě 1. (3.5.9)

With this, the second and higher derivatives of f can be written as

f pnqpxq “ F pn´2qp´3,´1;xq, n ě 2. (3.5.10)

Using sBpRq “ lBfpR{lBq and d
dP
RpP q “ 1{peBq, the derivatives of the path length

with respect to the momentum are given by

dnsBpRpP qq
dPn

“
ˆ
dRpP q
dP

ˇ̌
ˇ̌
P

˙n dnsBpRq
dRn

ˇ̌
ˇ̌
RpP q

“ lB

peBlBqn f
pnq

ˆ
RpP q
lB

˙
. (3.5.11)
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The Taylor series around a reference momentum P0 then reads

sB “ lB

8ÿ

n“0

1

n!

ˆ
P ´ P0

eBlB

˙n

f pnq pR0{lBq , (3.5.12)

which can also be written in terms of the relative momentum deviation δ “ pP ´P0q{P0:

sB “ lB

8ÿ

n“0

δnDB,npR0{lBq, (3.5.13)

with

DB,npxq ” xnf pnqpxq
n!

, (3.5.14)

where R0 “ P0{peBq is the nominal bending radius. The nth order non-linear dispersion
coefficient of a bend magnet is therefore given by lbDB,npR0{lbq. See Figure 3.4 for
a plot of the linear coefficient DB,1 and Figure 3.5 for plots of the higher-order terms
normalized to DB,1.

3.5.2 Drift Sections

Given the bend angle αpRq “ asinplB{Rq, the path length sD in the drift section between
the first and second magnets is

sDpRq “ lD

cospαpRqq “ lD
R{lBa

pR{lBq2 ´ 1
“ lDF p´1, 1, R{lBq, (3.5.15)

where lD is the distance between the magnets. In analogy to the derivation above, the
Taylor expansion of sDpRpP qq around P0 can be seen to be

sD “ lD

8ÿ

n“0

δnDD,npR0{lBq with DD,npxq ” xnF pnqp´1, 1, xq
n!

. (3.5.16)

Plots of the linear coefficient DD,1 and the higher-order terms normalized to DB,1 are
shown in Figure 3.4 and Figure 3.6, respectively.

3.5.3 Small Angle Limit

As can be seen in Figure 3.5 and Figure 3.6, the normalized higher-order dispersion
coefficients converge to a fixed value in limit of small bending angles. In the following,
these limits will be derived. Using Equation (3.5.9), it can be seen that

lim
xÑ8

xn`1F pn`1qpa, b;xq
F pa, b;xq (3.5.17)

“ lim
xÑ8

«
pa ` bqx

n`1F pnqpa ´ 2, b ` 1;xq
F pa, b;xq ´ b

xn`1F pnqpa ´ 2, b ´ 1;xq
F pa, b;xq

ff
(3.5.18)

“ lim
xÑ8

«
pa ` bq x2

x2 ´ 1

xnF pnqpa ´ 2, b ` 1;xq
F pa´ 2, b ` 1;xq ´ b

1

x2 ´ 1

xnF pnqpa ´ 2, b ´ 1;xq
F pa ´ 2, b ´ 1;xq

ff
,

(3.5.19)

so that if the limit limxÑ8 xnF pnqpa, b;xq{F pa, b;xq exists for all a and b, also the limit
limxÑ8 xn`1F pn`1qpa, b;xq{F pa, b;xq exists for all a and b and is given by

lim
xÑ8

xn`1F pn`1qpa, b;xq
F pa, b;xq “ pa ` bq lim

xÑ8

xnF pnqpa ´ 2, b ` 1;xq
F pa ´ 2, b ` 1;xq . (3.5.20)
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For n “ 0 the limit exists and is equal to unity, so that Equation (3.5.20) holds for all
n ě 0. Applying Equation (3.5.20) n times yields

lim
xÑ8

xnF pnqpa, b;xq
F pa, b;xq “

n´1ź

i“0

a` b´ i. (3.5.21)

With this, the small-angle limits of the normalized higher-order coefficientsDB,n{DB,1

and DD,n{DD,1 can be evaluated. The dispersion coefficients of a bend magnet are

LB,n ” lim
xÑ8

DB,npxq
DB,1pxq “ 1

n!
lim
xÑ8

xn´1f pnqpxq
f p1qpxq (3.5.22)

“ 1

n!
lim
xÑ8

«
pn´ 1qx

n´2f pnqpxq
f p2qpxq ` xn´1f pn`1qpxq

f p2qpxq

ff
(3.5.23)

“ 1

n!
lim
xÑ8

«
pn´ 1qx

n´2F pn´2qpa, b;xq
F pa, b;xq ` xn´1F pn´1qpa, b;xq

F pa, b;xq

ff
. (3.5.24)

Setting a “ ´3 and b “ ´1 and using Equation (3.5.21) yields

LB,n ” 1

n!

«
pn´ 1q

n´3ź

i“0

p´4 ´ iq `
n´2ź

i“0

p´4 ´ iq
ff

“ ´3

n!

n´3ź

i“0

p´4 ´ iq (3.5.25)

“ p´1qn`1pn ` 1q
2

, (3.5.26)

which agrees with the limits that can be estimated graphically from Figure 3.5.

For the drift sections the limits of the relative dispersion coefficients are

LD,n ” lim
xÑ8

DD,npxq
DD,1pxq “ 1

n!
lim
xÑ8

xn´1F pnqp´1, 1, xq
F p1qp´1, 1, xq (3.5.27)

“ 1

n!
lim
xÑ8

xn´1F pn´1qp´3, 0, xq
F p0qp´3, 0, xq “ 1

n!

n´2ź

i“0

p´3 ´ iq (3.5.28)

“ p´1qnpn` 1q
2

. (3.5.29)

3.6 Phase-Space Linearization Algorithm

Usually, it is desirable that the bunch is compressed as uniformly as possible, in the sense
that all parts of the bunch are compressed by the same amount. Perfectly uniform com-
pression can only be achieved if the longitudinal transport map of the bunch-compression
setup is linear. However, the transfer maps of both constituents of a bunch-compression
stage – namely the RF-module and the magnetic chicane – are intrinsically non-linear.
In the accelerating rf-modules, the energy gain of an electron depends sinusoidally on
its longitudinal position. Magnetic chicanes introduce non-linear dispersion as described
in Section 3.5. To minimize the non-linearity of the total transfer map, it is therefore
necessary to choose the compression parameters of the beamline elements in a way so
that their individual non-linear contributions cancel each other out as far as possible.

In the following, an algorithm is presented which calculates the appropriate RF set-
tings for a two-stage bunch compression setup, including a higher-harmonic cavity, which
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Figure 3.4: Plots of the linear dispersion coefficient of a bend magnet DB,1 and drift
sections DD,1 of a magnetic chicane.
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Figure 3.5: Plots of the non-linear dispersion coefficients of a bend magnet relative to
the linear coefficient.
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Figure 3.6: Plots of the non-linear dispersion coefficients of a drift section in a magnetic
chicane relative to the linear coefficient.

minimize the total compression non-linearities. Our algorithm is derived by investigating
the effect of the involved transport maps on a test phase-space density of the form

Ψrρ, f spq, pq ” ρpqq δpp ´ fpqqq, (3.6.1)

which corresponds to a bunch with vanishing energy spread, charge density ρpqq, and
a local energy deviation that is given by fpqq. The central idea behind the algorithm
is to keep f as linear as possible in the central part of the bunch, around q “ 0. This
is achieved by ensuring that the second and third derivatives of f vanish at q “ 0.
In references [68, 69], approaches with a similar objective but a different mathematical
foundation are presented.

To derive our algorithm, first it needs to be understood how the energy function f
and in particular its derivatives are affected by the two involved map types: kick- and
drift-maps. It can be seen that applying a general kick map Kκ : pq, pq ÞÑ pq, p ` κpqqq
to a test density, as defined above, yields a density of the same form

KκΨrρ, f s “ ρpqq δpp ´ κpqq ´ fpqqq “ Ψrρ, f ` κs. (3.6.2)

This shows that the new energy function is the sum of the old energy function and the
kick function and the charge density remains unchanged.

Turning to drift maps, the derivation is less straight-forward. Applying a drift map
Dβ : pq, pq ÞÑ pq ` βppq, pq yields

DβΨrρ, f s “ ρpq ´ βppqq δpp ´ fpq ´ βppqqq. (3.6.3)

While not immediately obvious, it is indeed possible to bring this expression into the
form shown in Equation (3.6.1). Assume, a unique function g : U Ñ R exists in a suitable
region U Ă R around q “ 0 which fulfills the condition

gpqq ´ fpq ´ βpgpqqqq “ 0 (3.6.4)
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and therefore also gpqq “ fpq ´ βpgpqqqq. For each longitudinal position q P U , this
function yields a value gpqq so that the argument of the δ distribution vanishes at p “
gpqq. Therefore, the delta distribution can be equivalently written as

δpp ´ fpq ´ βppqq “ δpp ´ gpqqq. (3.6.5)

The charge density of the propagated phase-space density can then be determined to be

ż

R

DβΨrρ, f sdp “
ż

R

ρpq ´ βppqq δpp ´ gpqqq dp “ ρpq ´ βpgpqqqq. (3.6.6)

As a result, we find that the new phase-space density can be written as

DβΨrρ, f s “ ρpq ´ βpgpqqqq δpp ´ gpqqq “ Ψrρ1, gs, (3.6.7)

with ρ1pqq ” ρpq ´ βpgpqqqq. We note that there can be many subsets U on which solu-
tions of Equation (3.6.4) exist and that the solution on a given subset is not necessarily
unique. If the solution is not unique, the above derivation holds for each solution inde-
pendently and the total phase-space density is the sum of the individual solutions. In
the following, solutions of Equation (3.6.4) are reintroduced as streaked functions. A
geometric construction of streaked functions is shown and their first three derivatives
are calculated.

3.6.1 Streaked Functions

Consider a function g which is constructed from an initial function f P C1pR,Rq and a
streak function β P C1pR,Rq so that g attains the value of the initial function fpxq at
the streaked coordinate given by x` βpfpxqq:

gpx ` βpfpxqqq “ fpxq. (3.6.8)

This construction is depicted in Figure 3.7. Conversely, it can be seen that g also satisfies

fpx´ βpgpxqqq “ gpxq, (3.6.9)

which is equivalent to Equation (3.6.4). Hence, g is defined only implicitly and an explicit
solution in general cannot be constructed. In fact, the domain of g might be restricted
to certain intervals. The rigorous conditions for the existence of g are slightly beyond
the scope of this investigation. For our purposes, it is sufficient to assume that gpxq
exists in a finite region U around x “ 0 and consider only x so that x`βpfpxqq is within
the domain of g.

It can be shown that despite the fact that g is defined only implicitly, its derivatives
can be calculated explicitly nonetheless. To this end, we introduce the function

Cpxq “ 1

1 ` f 1pxqβ1pfpxqq , (3.6.10)

which will help to keep the notation concise. With this, the first derivative of g at the
position x ` βpfpxqq can be calculated from Equation (3.6.8) and written as

g1px` βpfpxqqq “ Cpxqf 1pxq. (3.6.11)

As C determines the ratio of the derivative of f and the derivative of g at the translated
coordinate, it might be aptly referred to as the local compression function. The second

64



´1

´0.5

0

0.5

1

´1 ´0.5 0 0.5 1 1.5 2 2.5 3

fpxq gpx ` βpfpxqq
βpfpxqq

Figure 3.7: Construction of a function g (dashed) which fulfills gpx ` βpfpxqqq “ fpxq
from an initial function f (solid) and a streaking function β. The functions used in this
illustration are fpxq “ ´x and βpyq “ 1 ` 2y2. A second function that also fulfills the
same condition is shown by the dotted curve.

and third derivatives can then be written in terms of the derivatives of C and f

g2px` βpfpxqqq “ C
“
C 1f 1 ` Cf2

‰
(3.6.12)

g3px` βpfpxqqq “ CC 1
“
C 1f 1 ` Cf2

‰
` C2

“
C2f 1 ` C 1f2 ` C 1f2 ` Cf3

‰

“ CC 12f 1 ` 3C2C 1f2 `C2C2f 1 ` C3f3, (3.6.13)

where the function arguments have been dropped for the sake of notational brevity.
Turning to the derivatives of the compression function, we see

C 1 “ ´C2
“
f2β1 ` f 12β2

‰
(3.6.14)

and

C2 “ 2
C 1

C
´ C2

“
f3β1 ` f2β2 ` 2f 1f2β2 ` f 12β3

‰
, (3.6.15)

where the arguments of the derivatives of the streak function were dropped: βpnq ”
βpnqpfpxqq. This explicitly shows that the value of g and its first three derivatives at the
streaked coordinate x´βpfpxqq depend only on the values of f and β and their first three
derivatives evaluated at, respectively, the initial coordinate x and fpxq. More generally,
it becomes apparent that the nth derivative of g depends on the first n derivatives of
f and β. Hence, we find that the Taylor series of g can be constructed explicitly up to
arbitrary order. It is noteworthy that in general this Taylor series does not truncate at
finite order, even if f and β are both of finite order.

Without loss of generality, in the following it is assumed that the coordinate system
has been chosen so that at q “ 0 the energy deviation vanishes: fp0q “ 0. Further,
it is assumed without loss of generality that the streak function β is origin-preserving:
βp0q “ 0, which also can be accomplished by a suitable choice of the coordinates. In that
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case, g and its derivatives can be evaluated at x “ 0, from Equations (3.6.8), (3.6.11),
(3.6.12) and (3.6.13), as it is gpnqp0q “ gpnqpx ` βpfpxqq|x“0. This then yields the final
result for the first three derivatives of g at x “ 0:

gp0q “ fp0q
g1p0q “

`
Cf 1

˘ˇ̌
x“0

g2p0q “
`
CC 1f 1 ` C2f2

˘ˇ̌
x“0

g3p0q “
`
CC 12f 1 ` 3C2C 1f2 ` C2C2f 1 `C3f3

˘ˇ̌
x“0

.

(3.6.16)

3.6.2 Inversion of RF Curvature Coefficients

As shown in Equation (3.6.2), applying a kick map to a test phase-space density as
defined in Equation (3.6.1) simply adds the underlying kick function to the energy func-
tion. Kick maps therefore provide the means to manipulate the derivatives of the energy
function directly. In bunch-compression systems, the energy kicks are generated by ac-
celerating cavity modules, which, due to their operating principle, inherently produce
sinusoidal energy kicks. The change of the derivatives of the energy function therefore
depends on the arrival time of the bunch at the module, which is typically quantified by
the so-called rf-phase φ. In many FEL injectors, a cavity is installed that operates at
a harmonic of the main rf-frequency. The purpose of these “linearizer” cavities, which
are typically installed after the first linac section, is not to accelerate the beam, but to
counteract the non-linearities in the energy distribution introduced by the accelerating
cavities.

In order to make use of the rf-cavities to manipulate the energy function, it is nec-
essary to calculate the appropriate amplitudes and phases so that the cavities produce
a kick function with the requested derivatives. This inverse problem is solved in the
following. First, the case of a single cavity is considered. While in the single-cavity case
the inversion can also be achieved by direct calculation using trigonometric identities, we
introduce here an approach that can be naturally extended to multiple cavities. This ap-
proach is then used to invert the two-cavity case, which allows to include aforementioned
linearizer cavities in the algorithm.

3.6.2.1 Single Sine Function

Consider the function fpxq “ A cospk x ` φq, where k P R
` is a fixed wave number,

while the amplitude A P R
` and phase φ P r0, 2πq are free parameters. Given two

values h0, h1 P R, the goal is to find A and φ so that f and its first derivative assume
these values at x “ 0: fp0q “ h0 and f 1p0q “ h1. Writing f 1 explicitly, this yields the
non-linear system of equations

#
h0 “ A cospφq
h1 “ ´kA sinpφq

. (3.6.17)

This system can by inverted directly by algebraic means using trigonometric identities,
which yields #

φ “ atan2p´h1

k
, h0q

A “
b

h2

1

k2
` h20

. (3.6.18)

Another approach is to reparameterize the system first by introducing the complex
amplitudes a “ A exppiφq and its complex conjugate ā “ A expp´iφq, which allows to
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rewrite the system (3.6.17) as the linear equation

ˆ
h0
h1

˙
“ 1

2

ˆ
1 1
ik ´ik

˙ˆ
a

ā

˙
. (3.6.19)

Then, a solution for a and ā can be obtained by matrix inversion, which yields

ˆ
a

ā

˙
“ 1

´ik

ˆ
´ik ´1
´ik 1

˙ˆ
h0
h1

˙
“

˜
1 ´i 1

k

1 i 1
k

¸ˆ
h0
h1

˙
, (3.6.20)

so that the complex amplitude is given by

a “ h0 ´ i
h1

k
. (3.6.21)

Extracting the amplitude and phase from a shows that this solution is equivalent to
Equation (3.6.18)

#
φ “ argpaq “ atan2pℑpaq,ℜpaqq “ atan2p´h1

k
, h0q

A “ |a| “
b

h2

1

k2
` h20

. (3.6.22)

3.6.2.2 Double Sine Functions

Now consider the sum of two sine functions

fpxq “ A1 cospk1x ` φ1q `A2 cospk2x` φ2q, (3.6.23)

with amplitudes A1, A2 P R
`, phases φ1, φ2 P r0, 2πq, and fixed wave numbers k1, k2 P

R
`. This function has the four free parameters A1, A2, φ1, and φ2. Again, the goal is

to find solutions for these parameters so that f and its first three derivatives assume
certain values h0, h1, h2, h3 P R at x “ 0:

$
’’’’&
’’’’%

h0 “ f p0qp0q “ A1 cospφ1q ` A2 cospφ2q
h1 “ f p1qp0q “ ´k1A1 sinpφ1q ´ k2A2 sinpφ2q
h2 “ f p2qp0q “ ´k21A1 cospφ1q ´ k22A2 cospφ2q
h3 “ f p3qp0q “ k31A1 sinpφ1q ` k32A2 sinpφ2q.

(3.6.24)

It is not immediately obvious how this system can be solved directly by trigonometric
means. As before, however, it can be transformed into a linear system by rewriting it
in terms of the complex amplitudes an “ An exppiφnq with n “ 1, 2 and their complex
conjugates ān: ¨

˚̊
˝

h0
h1
h2
h3

˛
‹‹‚“ 1

2

¨
˚̊
˝

1 1 1 1
ik1 ´ik1 ik2 ´ik2
´k21 ´k21 ´k22 ´k22
´ik31 ik31 ´ik32 ik32

˛
‹‹‚

¨
˚̊
˝

a1
ā1
a2
ā2

˛
‹‹‚. (3.6.25)

After inverting the matrix we get

¨
˚̊
˝

a1
ā1
a2
ā2

˛
‹‹‚“ 1

k22 ´ k21

¨
˚̊
˚̊
˚̊
˝

k22 ´ik
2

2

k1
1 ´i 1

k1

k22 i
k2
2

k1
1 i 1

k1

´k21 i
k2
1

k2
´1 i 1

k2

´k21 ´ik
2

1

k2
´1 ´i 1

k2

˛
‹‹‹‹‹‹‚

¨
˚̊
˝

h0
h1
h2
h3

˛
‹‹‚, (3.6.26)
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which yields the solution for the complex amplitudes
$
’’’&
’’’%

a1 “ k22h0 ` h2

k22 ´ k21
´ i

k22h1 ` h3

k1pk22 ´ k21q

a2 “ k21h0 ` h2

k21 ´ k22
´ i

k21h1 ` h3

k2pk21 ´ k22q

. (3.6.27)

From this, the absolute value of the amplitude and the rf-phases can be calculated
equivalently to Equation (3.6.22) for both complex amplitudes independently. It becomes
apparent that – as one might have intuitively expected – a solution exists only if the
frequencies of the two cavities are unequal.

3.6.3 Calculation Procedure

With the mathematical tools developed above, it is now possible to specify the compu-
tation procedure to calculate the rf-parameters. We will assume that the bunch com-
pression setup consist of a cavity module doublet, a chicane, a single cavity module, and
a second chicane, in that order.

In the following, we will refer to the value of the energy function and its first three
initial derivatives as the curvature coefficients and denote them by

b “ pE, h, h1, h2q ” pfp0q, f 1p0q, f2p0q, f3p0qq. (3.6.28)

For the procedure, we specify the initial curvature coefficients b0 and the final non-
linear coefficients h1

2, h
2
2 after the second chicane, as the input beam parameters.

The input machine parameters for the procedure are: target beam energies E1, E2

at the two chicanes and the respective compression factors C1, C2; frequencies of the
first cavity k1, linearizer cavity kh, and second cavity k2; plus the layout of the chicanes:
magnet lengths, drift lengths, deflection angles.

In the first step of the procedure, the first three dispersion coefficients are calculated
from the chicane parameters as described in Section 3.5 for both chicanes. These corre-
spond to the derivatives of the streak function as defined in Section 3.6.1, which we will
denote by β “ pβ1p0q, β2p0q, β3p0qq.

By these input parameters, the required beam chirps ĥ1 and ĥ2 at the entrance of
the two chicanes are fixed and are given by

ĥi “ 1

p1 ´ 1
Ci

qβ1
i

. (3.6.29)

Also the chirps hi after the respective chicanes can be calculated immediately via hi “
Ciĥi. With this and the fact that the final energy is equal to E2, which was specified
as an input parameter, all final curvature coefficients after the second chicane b2 “
pE2, h2, h

1
2, h

2
2q are known.

With the final curvature coefficients b2 fully specified, the procedure works by track-
ing the coefficients backwards and solving for the required rf-parameters on the way.
Using the relations given in Equation (3.6.16), the curvature coefficients b̂2 at the en-
trance of the second chicane can be calculated from b2 using the streak coefficients β2,

which could be notated as b̂2
β2Ð b2.

As the energy and chirp before and after the second cavity are known, the required
rf-parameters of the second cavity can be determined using the single-cavity inversion

formula given in Equation (3.6.22): pE2 ´ E1, h2 ´ h1q sine inv.Ñ pA2, φ2q. Using these
rf-parameters the derivatives of the kick function of the second cavity can be calculated.

68



As a result of Equation (3.6.2), tracking b̂2 backwards through the cavity then amounts
to merely subtracting the kick function derivatives, yielding the curvature coefficients at

the entrance of the second cavity b1 via b1
A2,φ2Ð b̂2.

With the coefficients b1 known, the coefficients at the entrance of the first chicane

b̂1
β1Ð b1 can be calculated in the same manner as before, using Equation (3.6.16) with

the chicane’s streak coefficients β1.
Now that the coefficients after the first cavity b̂1 are known, as well as the ini-

tial curvature coefficients β0 – which were specified as input parameters – the required
parameters of the cavity doublet can be determined using the two-sine inversion for-

mula (3.6.27). This yields the final set of parameters pb̂1 ´ b0q 2-sine inv.Ñ pA1, φ1, Ah, φhq,
namely the amplitudes and phases of the first cavity and the linearizer cavity.

Appendix C contains an implementation of this algorithm. This implementation was
used to derive the bunch compression working points studied in Section 6.4.
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4 Collective Effects in FEL Injectors

4.1 Longitudinal Space Charge in a Relativistic Bunch

An important contributor to the collective dynamics of an electron bunch in FEL injec-
tors is the interaction between the electrons via longitudinal space-charge forces. As the
electrons are accelerated to energies that largely exceed their rest energy, it is mandatory
to properly take into account relativistic effects, when determining the electric poten-
tials within an electron bunch. In the following, we consider the electric potential of an
relativistic electron bunch following a straight trajectory in the lab frame with constant
velocity. As the “lab frame” we define the frame of reference in which the accelerator
components are at rest. This is in contrast to the “bunch frame”, which is the rest
frame of a reference particle with reference energy E0 “ γ me c

2. For the purpose of
this derivation, the velocity spread within the bunch is neglected. The goal is to derive
an expression for the electro-magnetic potentials in the lab frame, as this is the frame
of reference in which the equation of motion are formulated. To this end, we define
the four-current in the lab frame, transform it into the bunch frame, solve Maxwell’s
equation in the bunch frame, and finally transform the resulting potentials back into the
lab frame.

Consider a bunch that travels in the direction labeled by the z coordinate. Then,
assuming the charge density is not explicitly time-dependent Btρpc t, x, y, zq “ 0, the
charge density ρpc t, x, y, zq of such a bunch in the lab frame is given by

ρpc t, x, y, zq “ ρp0, x, y, z ´ βctq, (4.1.1)

with the corresponding four-current

Jµpc t, x, y, zq “

¨
˚̊
˝

1
0
0
β

˛
‹‹‚c ρpc t, x, y, zq. (4.1.2)

Here, t denotes the time coordinate, while x, y, and z are the coordinates along an
Cartesian coordinate system in the lab frame. Together they form the lab frame coordi-
nates xµ “ pc t, x, y, zqT. In order to transform this four-current from the lab frame into
the bunch frame, a Lorentz-transform given by

Λµ
ν “

¨
˚̊
˝

γ 0 0 ´β γ
0 1 0 0
0 0 1 0

´β γ 0 0 γ

˛
‹‹‚ (4.1.3)

has to be applied. This yields the four-current in the bunch frame in dependence on the
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lab frame coordinates

J 1µpxµq “ Λµ
νJ

νpxµq “

¨
˚̊
˝

γ ´ β2γ

0
0

´βγ ` βγ

˛
‹‹‚c ρpxµq “

¨
˚̊
˝

1 ´ β2

0
0
0

˛
‹‹‚c γ ρpxµq “

¨
˚̊
˝

c

0
0
0

˛
‹‹‚
1

γ
ρpxµq.

(4.1.4)

To solve Maxwell’s equations in the bunch frame, this four-current needs to be expressed
as a function of the bunch frame coordinates x1µ “ Λµ

νx
µ. Replacing the lab coordinates

in Equation (4.1.4) by

xµ “ pΛµ
ν q´1 x1µ “

¨
˚̊
˝

γ 0 0 β γ

0 1 0 0
0 0 1 0
β γ 0 0 γ

˛
‹‹‚

¨
˚̊
˝

c t1

x1

y1

z1

˛
‹‹‚“

¨
˚̊
˝

γpc t1 ` β z1q
x1

y1

γpβ c t1 ` z1q

˛
‹‹‚ (4.1.5)

and using Equation (4.1.1), this yields for the bunch frame four-current

J 1µ
`
c t1, x1, y1, z1

˘
“

¨
˚̊
˝

c

0
0
0

˛
‹‹‚
1

γ
ρ
`
γrc t1 ` β z1s, x1, y1, γrβ c t1 ` z1s

˘
(4.1.6)

“

¨
˚̊
˝

c

0
0
0

˛
‹‹‚
1

γ
ρ
`
0, x1, y1, γrβ c t1 ` z1s ´ β γ rc t1 ` β z1s

˘
(4.1.7)

“

¨
˚̊
˝

c

0
0
0

˛
‹‹‚
1

γ
ρ
`
0, x1, y1,

“
1 ´ β2

‰
γ z1

˘
“

¨
˚̊
˝

c

0
0
0

˛
‹‹‚
1

γ
ρ

ˆ
0, x1, y1,

z1

γ

˙
. (4.1.8)

It becomes apparent that in the bunch frame, the current density vanishes and only the
charge density component remains.

Maxwell’s equations can now be solved in the bunch frame, which yields the proper
four-potential A1µ ” pφ1{c,A1

x, A
1
y, A

1
zqT. In Lorenz gauge, the covariant formulation of

Maxwell’s equations reads

˝
1

¨
˚̊
˝

φ1

c

A1
x

A1
y

A1
z

˛
‹‹‚“ µ0J

1µ (4.1.9)

with ˝
1 ” 1

c2
B2t1 ´∇

12 and the vacuum magnetic permeability µ0. The prime denotes that
this differential operator acts on the bunch-frame coordinates. As the current density
vanishes in the bunch frame, a solution for the vector potential is

`
A1

x, A
1
y, A

1
z

˘
“ p0, 0, 0q.

For the scalar potential, this yields

˝
1φ1 “ c µ0 J

10, (4.1.10)

where J 10 “ c
γ
ρp0, x1, y1, z1{γq is given by Equation (4.1.8). Due to the vanishing time

dependence of the charge density, a time-independent solution for the scalar potential
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exists, which we will consider in the following. With B2t1φ1 “ 0 Equation (4.1.10) reduces
to Poisson’s equation for the scalar potential

´∇
12φ1pt1, x1, y1, z1q “ 1

ǫ0 γ
ρ

ˆ
0, x1, y1,

z1

γ

˙
, (4.1.11)

with the vacuum permittivity ǫ´1
0 ” µ0 c

2. This shows that the source function of Pois-
son’s equation in the bunch frame is the time-independent charge density that was
elongated in a measure-preserving along the z direction by the factor γ. Poisson’s
equation can be solved by convolving the source function with the Green’s function
G “ G∇2 “ ´1

4π
?

x2`y2`z2
.

φ1pt1, x1, y1, z1q “ ´ 1

ǫ0 γ
rGpu1, u2, u3q ˚ ρp0, u1, u2, u3{γqs pt1, x1, y1, z1q. (4.1.12)

Convolutions of functions with modified arguments are cumbersome to formulate unam-
biguously. In the notation above, the auxiliary argument variables ui are used in order
to avoid ambiguity. The convolution operation is executed with respect to the ui, which
yields a function that is subsequently evaluated at pt1, x1, y1, z1q.

As we want to solve the equations of motion in the lab frame, the potentials have
to be transformed into the lab frame and be expressed as a function of the lab frame
coordinates. Transforming the four potential via an inverse Lorenz boost along the z
direction yields

Aµ “ pΛµ
ν q´1A1ν “

¨
˚̊
˝

γ 0 0 β γ

0 1 0 0
0 0 1 0
β γ 0 0 γ

˛
‹‹‚

¨
˚̊
˝

φ1

c

0
0
0

˛
‹‹‚“

¨
˚̊
˝

1
0
0
β

˛
‹‹‚
γ

c
φ1. (4.1.13)

Transforming the bunch frame coordinates back into the lab frame using
¨
˚̊
˝

ct1

x1

y1

z1

˛
‹‹‚“ Λµ

νx
1ν “

¨
˚̊
˝

γ 0 0 ´β γ
0 1 0 0
0 0 1 0

´β γ 0 0 γ

˛
‹‹‚

¨
˚̊
˝

ct

x

y

z

˛
‹‹‚“

¨
˚̊
˝

γrct ´ β zs
x

y

γr´βct ` zs

˛
‹‹‚, (4.1.14)

the lab-frame potentials can be seen to be

Aµ “

¨
˚̊
˝

1
0
0
β

˛
‹‹‚
γ

c
φ1 pγrt ´ β z{cs, x, y, γr´βct ` zsq “

¨
˚̊
˝

1
0
0
β

˛
‹‹‚
γ

c
φ1 p0, x, y, γr´βct ` zsq ,

(4.1.15)
where the time coordinate has been set to zero, as the scalar potential is not explicitly
time-dependent.

These electromagnetic potentials determine the Hamiltonian

Hpq,p; tq “ eφpqq ` c

b
pp ´ eApqqq2 `m2c2, (4.1.16)

as already shown in Equation (2.6.1), where the canonical coordinates are q “ px, y, zq
and conjugate momentum is p “ me γ cβ ` ZA. For the equation of motion of the ith
momentum coordinate, this yields

dpi
dt

“ ´dH

dqi
“ ´edφpqq

dqi
` c e

dApqq
dqi

¨ pp ´ eAqa
pp ´ eApqqq2 `m2 c2

. (4.1.17)
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It can be seen that in the ultra-relativistic limit, the right-most fraction is equal to β.
In that case, it is

dpi
dt

“ ´e
„
dφpqq
dqi

´ cβ ¨ dApqq
dqi


. (4.1.18)

Plugging in the potentials from Equation (4.1.15) and β “ p0, 0, βq, this gives
dpi
dt

“ ´e γ
`
1 ´ β2

˘ d

dqi
φ1p0, x, y, γrz ´ βctsq “ ´ e

γ

d

dqi
φ1p0, x, y, γrz ´ βctsq. (4.1.19)

In particular, it is

dpx,y
dt

“ ´ e

γ

Bφ1

Bqx,y
p0, x, y, γrz´βctsq, and

dpz
dt

“ ´e Bφ1

Bqz
p0, x, y, γrz´βctsq. (4.1.20)

Substituting the bunch-frame potential with Equation (4.1.12) we get

dpx,y
dt

“ e

ǫ0 γ2
B

Bqx,y
rGpu1, u2, u3q ˚ ρp0, u1, u2, u3{γqs p0, x, y, γrz ´ βctsq (4.1.21)

dpz
dt

“ e

ǫ0 γ

B
Bqz

rGpu1, u2, u3q ˚ ρp0, u1, u2, u3{γqs p0, x, y, γrz ´ βctsq. (4.1.22)

Using the differentiation rules for convolutions, this can be written using the derivative
of the Green’s function

dpx,y
dt

“ e

ǫ0 γ2

„BGpu1, u2, u3q
Bu1,2

˚ ρ
ˆ
0, u1, u2,

u3

γ

˙
p0, x, y, γrz ´ βctsq (4.1.23)

dpz
dt

“ e

ǫ0 γ

„BGpu1, u2, u3q
Bu3

˚
ˆ
0, u1, u2,

u3

γ

˙
p0, x, y, γrz ´ βctsq. (4.1.24)

In this form, the elongated charge density appears in the equations of motion. In certain
cases, it can be beneficial to reformulate the equations of motion in a way so that only
the unmodified charge density appears. This can be achieved by applying a theorem
concerning convolutions of functions with scaled arguments. Given two functions f, g :
R Ñ R, it can be seen that when scaling the argument of g by a factor α, in the sense
gpxq Ñ gpαxq “ g ˝ px ÞÑ αxq, their convolution can be written as

f ˚ pg ˝ px ÞÑ αxqq “ 1

α
trf ˝ px ÞÑ x{αqs ˚ gu ˝ px ÞÑ αxq. (4.1.25)

With this we see that the relativistic effect can be equivalently accounted for by con-
tracting the argument of the Green’s function

dpx,y
dt

“ e

ǫ0 γ

„BGpu1, u2, γ u3q
Bu1,2

˚ ρp0, u1, u2, u3q


p0, x, y, z ´ βctq (4.1.26)

dpz
dt

“ e

ǫ0

„BGpu1, u2, γ u3q
Bu3

˚ ρp0, u1, u2, u3q


p0, x, y, z ´ βctq, (4.1.27)

instead of elongating the charge density.
This thesis revolves around a one-dimensional model of the longitudinal beam dynam-

ics. A one-dimensional equivalent of Equation (4.1.27) can be constructed by specifying
the transverse bunch shape explicitly, which allows to remove the transverse dependence
of the force term by integrating over the transverse dimensions [70,71]. Then, the convo-
lution with respect to the transverse coordinates can be executed analytically, yielding
an effective one-dimensional longitudinal Green’s function G}pzq so that

dpz
dt

pt, zq “ e

ǫ0

“
G}pγuq ˚ ρzpuq

‰
pz ´ βctq, (4.1.28)
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with the line charge density ρzpzq “
ť

R2 ρp0, x, y, zqdxdy. This can be solved in Fourier
space via the convolution theorem, which yields

dpz
dt

pt, zq “ e

ǫ0

!
F

´1
zÐk

”
ČG}pγuqpkq rρzpkq

ı)
pz ´ βctq. (4.1.29)

As it is ČG}pγuqpkq “ 1
γ
ČG}puq

´
k
γ

¯
, we finally arrive at

dpz
dt

pt, zq “ e

ǫ0 γ

"
F

´1
zÐk

„
ĂG}

ˆ
k

γ

˙
rρzpkq

*
pz ´ βctq. (4.1.30)

This shows that in the one-dimensional model, relativistic effects can be accounted for
by modifying the non-relativistic Fourier-transformed Green’s function – which might
be known ab initio – according to

ĂG}pkq ÞÑ 1

γ
ĂG}

ˆ
k

γ

˙
. (4.1.31)

4.2 Coherent Synchrotron Radiation

When relativistic charged particles travel on a bent trajectory they emit synchrotron
radiation. In most parts of a free-electron lasers injector, the trajectory of the electrons
is designed to be straight. Typically, the design electron orbit deviates significantly from
a straight line only in the bunch compression chicanes, where it is deflected by the chicane
magnets. Within the chicane magnets, the electrons travel on a circular trajectory. Due
to this curved trajectory, it is possible that the synchrotron radiation emitted by the
electrons closer to the tail – the upstream end – of the bunch can reach electrons closer
to the head – the downstream end – of the bunch. Emitting this radiation causes the
electrons to lose energy. In turn, electrons further downstream that interact with the
emitted radiation can gain or lose energy in the process. Also the transverse momentum
of the electrons in the bend plane can be affected by this interaction. For the purpose
of this thesis, we are mainly interested in the longitudinal aspects of this effect, which
is the exchange of energy that the electrons experience.

In the following, to determine the energy exchange between a source and a observer
electron via this radiative interaction, first the radiation fields generated by the source
electron are calculated using the Liénard-Wiechert fields [15–17, 72–76]. The rate of
change of the energy of the observer electron can then be determined by examining
its motion relative to these fields. The derivation presented here is heavily inspired by
reference [75], but deviates from that guideline in certain aspects. In particular, we
will postpone certain approximations until the end of the derivation and consider only
the interaction of two particles, which travel on a common circular trajectory within
the magnet. In reference [75], also the interaction between electrons upstream and
downstream of the magnet with those inside the magnet is considered. A more general
approach is presented in reference [76], which allows to calculate the radiative interaction
of electrons following an arbitrary trajectory.

The electric Liénard-Wiechert field observed at a position r, caused by a source
electron that follows the trajectory rsptq, can be split into two parts

Eprs, r, tq “ Eradpr, trq ` Estatpr, trq, (4.2.1)

where Erad is the radiation term, which encapsulates the contribution of the emitted
radiation, and Estat is the static term, which describes the contribution of the Coulomb
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force. Both terms need to be evaluated at the retarded time tr. At a given observation
time t, the retarded time tr at an observation point r is defined as the time at which
the source electron was separated from the observation point by a distance equal to the
difference between the observation time and the retarded time times the speed of light

|r ´ rsptrq| “ c pt´ trq . (4.2.2)

The solution of this implicit equation depends on the actual source trajectory. In the
following, we will consider a source electron moving on a circular trajectory and evaluate
the fields at observation points along the same trajectory.

4.2.1 Radiation Term

The radiation term reads

Erad “ ´e
4π ǫ0 c

n ˆ
”
pn ´ βrq ˆ 9βr

ı

p1 ´ n ¨ βrq3 |r ´ rr| , (4.2.3)

where rr ” rsptrq is the position of the source electron at the retarded time, βr ” βsptrq
is the velocity vector βsptq ” 1

c
d
dt
rsptq at the retarded time with the time derivative

9βr ” d
dt
βr, and n ” r´rr

|r´rr| is the normalized vector pointing from the observation point

to the source [72]. The rate of change of the energy of the observer electron due to the
interaction with the radiation field is given by

ˆ
dE

dt

˙

rad

“ ´e cβ ¨ Erad, (4.2.4)

where β is the velocity vector of the observer electron. Note that in the following a bold
E denotes an electric field and E denotes the energy of an electron. Using a well-known
identity for the vector triple product the numerator of Equation (4.2.3) can be written
as

n ˆ
”
pn ´ βrq ˆ 9βr

ı
“ pn ´ βrqn ¨ 9βr ´ 9βr n ¨ pn ´ βrq. (4.2.5)

With this, Equation (4.2.4) yields

ˆ
dE

dct

˙

rad

“ e2

4π ǫ0

pβ ¨ n ´ β ¨ βrqpn ¨ 9βrq ´ pβ ¨ 9βrqp1 ´ n ¨ βrq
p1 ´ n ¨ βrq3 |r ´ rr| . (4.2.6)

We will now consider a circular source trajectory and evaluate the electric fields
that an electron observes which travels on the same trajectory but in front or behind the
source electron. This configuration is depicted in Figure 4.1. As the electrons travel on a
common circle with radius R, the arc length along that trajectory can be used to specify
their positions. In Figure 4.1, s denotes the arc position of the observer electron and sr
is the position of the source electron at the retarded time. It is sensible to introduce the
retarded angle, which is the angle between the observer electron and the source electron

µ ” s´ sr

R
. (4.2.7)

Using this retarded angle, the vector products in Equation (4.2.6) can be evaluated
explicitly

n ¨ β “ n ¨ βr “ β cos
´µ
2

¯
, β ¨ βr “ β2 cospµq, n ¨ 9βr “ 9β sin

´µ
2

¯

β ¨ 9βr “ β 9β sinpµq, |r ´ rr| “ 2R sin
´µ
2

¯
,

(4.2.8)
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r ´ rr

µ

µ

2

µ

2 s

β

n

9βr R

sr

βr

Figure 4.1: Geometric relations used in the calculation of the Liénard-Wiechert field,
generated by a charged particle on a circular trajectory.

where β “ |β| “ |βr|, 9β “ | 9β| “ | 9βr|, and a dot denotes differentiation with respect to
t. Substituting this and applying well-known trigonometric identities, Equation (4.2.6)
yields

ˆ
dE

dt

˙

rad

“ e2

4π ǫ0

pβ ¨ n ´ β ¨ βrqpn ¨ 9βrq ´ pβ ¨ 9βrqp1 ´ n ¨ βrq
p1 ´ n ¨ βrq3 |r ´ rr| (4.2.9)

“ e2

4π ǫ0

β 9β
 “
cos

`
µ
2

˘
´ β cospµq

‰
sin

`
µ
2

˘
´ sinpµq

“
1 ´ β cos

`
µ
2

˘‰(

2R sin
`
µ
2

˘ “
1 ´ β cos

`
µ
2

˘‰3 (4.2.10)

“ e2β 9β

8π ǫ0R

β ´ cos
`
µ
2

˘
“
1 ´ β cos

`
µ
2

˘‰3 . (4.2.11)

From first principles, it can be seen that the absolute value of the acceleration vector
9β of a particle that travels with velocity βc on a circular trajectory with radius R is
9β “ β2c

R
. With this, we finally arrive at

ˆ
dE

dct

˙

rad

“ e2

4π ǫ0R2
β3

β ´ cos
`
µ
2

˘

2
“
1 ´ β cos

`
µ
2

˘‰3 “ e2

4π ǫ0R2
Frad

´
β,
µ

2

¯
(4.2.12)

where we define the auxiliary function

Fradpβ, µq ” β ´ cospµq

2
”
1
β

´ cospµq
ı3 . (4.2.13)

Of particular interest is the ultra-relativistic limit. To this end, we scale the auxiliary
function by a factor of γ´4 and its angle argument by γ´1

F̂radpβ, µq “ 1

γ4
Frad

ˆ
β,
µ

γ

˙
(4.2.14)

where γ ” 1{
a

1 ´ β2. Repeated application of L’Hospital’s rule [77] shows after the
third iteration that the limit limβÑ1 F̂rad exists and is given by

lim
βÑ1

F̂radpβ, µq “ 2
µ2 ´ 1

rµ2 ` 1s3
” Φradpµq. (4.2.15)
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Figure 4.2: Plots of the auxiliary function F̂radpβ, µq which describes the rate of change
of the energy resulting from the radiative part of the Liénard-Wiechert field, which an
observer electron experiences that is separated from the source electron by the retarded
angle µ.

In Figure 4.2, plots of F̂radpβ, µq are shown for multiple values of β as well as the
ultrarelativistic limit.

In conclusion, we find that the rate of change of the energy of the observer electron
due to radiation emitted by the source electron is given by Equation (4.2.12), which in
the ultrarelativistic limit takes the form

lim
βÑ1

ˆ
dE

dct

˙

rad

“ e2

4πǫ0R2
γ4 Φrad

´γµ
2

¯
“ e2

2πǫ0R2
γ4

`
γµ
2

˘2 ´ 1
”`

γµ
2

˘2 ` 1
ı3 , (4.2.16)

where µ is the retarded angle between the electrons.

4.2.2 Static Term

In addition to the radiative part, there is a static part Estat that contributes to the total
Liénard-Wiechert field

Estat “ ´e
4π ǫ0 γ2

n ´ βr

r1 ´ n ¨ βrs3 |r ´ rr|2 . (4.2.17)

It encapsulates the contribution of the electrostatic Coulomb potential of the source
electron, taking into account the potentially curved trajectory as well as the retardation
effect. Analogously to the radiation term, the resulting rate of change of the energy of
the observer electron is ˆ

dE

dt

˙

stat

“ ´e cβ ¨ Estat. (4.2.18)

78



Using again Equation (4.2.8), it can be seen that

β ¨ rn ´ βrs
r1 ´ n ¨ βrs3 |r ´ rr|2 “ 1

R2

β
“
cos

`
µ
2

˘
´ β cospµq

‰

4
“
1 ´ β cos

`
µ
2

˘‰3
sin

`
µ
2

˘2 . (4.2.19)

Introducing the auxiliary function

Fstatpβ, µq “ β rcospµq ´ β cosp2µqs
4γ2r1 ´ β cospµqs3 sinpµq2 , (4.2.20)

Equation (4.2.18) can be written as
ˆ
dE

dct

˙

stat

“ e2

4π ǫ0R2
Fstat

´
β,
µ

2

¯
. (4.2.21)

To investigate the ultra-relativistic limit, we again define a scaled auxiliary function

F̂statpβ, µq ” 1

γ4
Fstat

ˆ
β,
µ

γ

˙
. (4.2.22)

The ultra-relativistic limit of this function exists and is given by

lim
βÑ1

F̂statpβ, µq “ 3µ2 ` 1

µ2pµ2 ` 1q3 ” Φstatpµq. (4.2.23)

Therefore, the contribution of the static term to the rate of change of the energy of the
observer particle is in the ultra-relativistic limit

lim
βÑ1

ˆ
dE

dct

˙

stat

“ 3e2

4πǫ0R2
γ4

`
γµ
2

˘2 ` 1
`
γµ
2

˘2 ”`γµ
2

˘2 ` 1
ı3 . (4.2.24)

4.2.3 Construction of the Retarded Angle

Above, the interaction between the source and the observer electrons moving on a com-
mon circle was derived in terms of the retarded angle between both electrons. In ap-
plication, it is however more meaningful to formulate the interaction in terms of the
path-length distance of the electrons along the arc. Let s and s1 be the arc positions
of the observer and the source electron at the observation time t, respectively, and sr
the arc position of the source electron at the retarded time tr. As the construction in
Figure 4.3 depicts, the retarded angle is given as the solution of the equation system

#
sin

`
µ
2

˘
“ c∆t

2R

µ “ βc∆t
R

` s´s1

R

, (4.2.25)

with ∆t ” t´ tr. By solving one equation for c∆t{R and substituting in the other, this
can be seen to be equivalent to

s´ s1

R
“ µ´ 2β sin

´µ
2

¯
. (4.2.26)

Seeing that the limit

lim
βÑ1

γ3
„
µ

γ
´ 2β sin

ˆ
µ

2γ

˙
“ µ

2
` µ3

24
(4.2.27)

exists, Equation (4.2.26) yields for the retarded angle in the ultra-relativistic limit

s´ s1

R
“ µ

2 γ2
` µ3

24
. (4.2.28)
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µ
R

ssr
c∆t

s1

βc
∆
t

Figure 4.3: Construction of the retarded angle µ from the position s of an observer
particle, the position s1 of a source particle at the observation time, and the position sr
of the source particle at the retarded time. Observer and source particle both travel on
the same circular trajectory.

4.2.4 Straight-Line Coulomb Renormalization

Unfortunately, the electrostatic interaction term (4.2.24) contains a non-integrable sin-
gularity at µ “ 0. A remedy proposed in [75] is to subtract from (4.2.24) the contribution
of the Coulomb term that the observer electron at path length s would experience from
the source electron at path length s1, if they were traveling not on a circle, but on a
straight line with the same separation s´ s1, which is given by

ˆ
dE

dct

˙

str

“ e2

4πǫ0

1

γ2 ps´ s1q2 (4.2.29)

The separation s ´ s1 can be expressed in terms of the retarded angle using Equa-
tion (4.2.26), or, in the ultrarelativistic limit, Equation (4.2.28). In the latter case, the
straight-line term reads

lim
βÑ1

ˆ
dE

dct

˙

str

“ e2

4πǫ0R2
γ4

1

pγµ
2

` γ3µ3

24
q2

“ e2

4πǫ0R2
γ4 Φstr

´γµ
2

¯
, (4.2.30)

with the auxiliary function

Φstr pµq ” 1

µ2
`
1
3
µ2 ` 1

˘2 . (4.2.31)

Subtracting Equation (4.2.30) from Equation (4.2.24) yields the renormalized static
interaction term ˆ

dE˚

dct

˙

stat

“ e2

4πǫ0R2
γ4 Φ˚

stat

´γµ
2

¯
, (4.2.32)

with

Φ˚
statpµq ” Φstatpµq ´ Φstrpµq “ 1

µ2

«
3µ2 ` 1

pµ2 ` 1q3 ´ 1

p1
3
µ2 ` 1q2

ff
. (4.2.33)

4.2.5 CSR Kick Function

The total CSR induced rate of change of the observer electron’s energy is given by the
sum of the radiative part (4.2.24) and the renormalized electrostatic part (4.2.33)

ˆ
dE

dct

˙

CSR

“ e2

4πǫ0R2
γ4 Φ

´γµ
2

¯
, (4.2.34)
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with

Φpµq ” Φrad ` Φ˚
stat “ 2

µ2 ´ 1

rµ2 ` 1s3
` 1

µ2

«
3µ2 ` 1

pµ2 ` 1q3 ´ 1

p1
3
µ2 ` 1q2

ff
. (4.2.35)

See Figure 4.4 for a plot of Φpµq.
In order to determine the total local rate of change of an observer electron at a

position s, the contributions of all source electrons behind the observer have to be
integrated. Electrons in front of the observer do not contribute, as their emitted radiation
cannot reach the observer. Given the line charge density ρpsq of the bunch, the total
differential CSR kick function is

ˆ
dE

ds

˙

CSR

ˇ̌
ˇ̌
s

“ e2

4πǫ0R2
γ4

ż s

s0

ρps1qΦ
ˆ
γ µps´ s1q

2

˙
ds1, (4.2.36)

where µps ´ s1q is the solution of Equation (4.2.28) and s0 is an appropriately chosen
lower integration limit. This expression can be directly used to determine the CSR kick
function numerically.

It can be helpful to determine the integral in Equation (4.2.36) using integration
by parts. The integral of the kernel function ΦCSR can be determined by introducing
µ̂ “ γµ{2, which is related to the path-length difference via Equation (4.2.28)

1

3
µ̂3 ` µ̂ “ γ3

s´ s1

R
. (4.2.37)

For the differential element, this yields

ds1 “ ´ R

γ3

`
µ̂2 ` 1

˘
dµ̂, (4.2.38)

so that the integral can be evaluated:
ż

R

Φ

ˆ
γ µps´ s1q

2

˙
ds1 “ ´ R

γ3

ż

R

pµ̂2 ` 1qΦ pµ̂q dµ̂ “ R

γ3
Θ pµ̂q , (4.2.39)

where the auxiliary function Θ pµq is defined as

Θ pµq ” 2µ pµ2 ` 2q
pµ2 ` 2q2 ´ 1

. (4.2.40)

In Figure 4.4, a plot of Θ pµq is shown. With this, the integral can can be written as
ż s

s0

ρps1qΦCSR

ˆ
γ µps´ s1q

2

˙
ds1 “ ´ R

γ3
ρps0qΘ pµ̂ps´ s0qq

´ R

γ3

ż s

s0

dρps1q
ds

Θ pµ̂ps´ s0qqds1,

(4.2.41)

where the identity Θ pµ̂p0qq “ 0 was used.
From the above expression, an approximation for the case of large particle distances

and large lower integration limit s0 can be derived, as suggested in [75]. Considering
a line charge density with compact support, the term proportional to ρps0q in Equa-
tion (4.2.41) vanishes for a sufficiently large value of s0. If the particle distance is much
larger than the scaled bending radius s ´ s1 " R

γ3 , then Equation (4.2.37) yields for the
scaled retarded angle the approximation

µ̂ « 3
1

3 γ

ˆ
s´ s1

R

˙1

3

. (4.2.42)
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Figure 4.4: Plots of the CSR kernel function Φpµ̂q and its anti-derivative Θpµ̂q.

For µ̂ " 1, the function Θpµ̂q approaches Θ pµ̂q « 2µ̂´1. Hence, for large particle
distances and s0 Ñ 8 the total CSR interaction term given in Equation (4.2.41) can be
approximated by

ˆ
dE

ds

˙

CSR

ˇ̌
ˇ̌
s

« ´
ˆ
8

3

˙ 1

3 e2

4πǫ0R
2

3

ż s

8

dρps1q
ds

`
s´ s1

˘´ 1

3 ds1, s´ s1 " R

γ3
. (4.2.43)

It needs to be stressed that this approximation is valid only for large particle distances.
Interactions between particles with separation smaller than R{γ3 are not reflected cor-
rectly by this approximation. To treat such small-scale interactions correctly, the original
Equation (4.2.36) has to be used.

4.2.6 Transient Effects

Consider the situation close to the entrance of the dipole. Before entering the dipole, the
electrons travel on a straight trajectory and therefore do not emit radiation. Only after
they enter the dipole field, they start to radiate. For the sake of simplicity, assume that
all electrons enter the dipole simultaneously so that all electrons start to radiate at the
same time. Close to the entrance of the magnet, the radiation emitted by the electrons
further back in the bunch did not yet reach all electrons further in front of the bunch, due
to the finite propagation speed. By definition, only the radiation emitted by electrons
that are closer to the observer electron than the so-called slippage length did have enough
time to reach the observer electron. It can be seen that this length corresponds to the
difference between the path length which the bunch has traveled within the magnet and
the straight-line distance to its entry point into the magnet [75,78]. Thus, the slippage
length increases as the bunch travels through the magnet. If the angular position of the
bunch within the magnet is denoted by φ, it can be seen from Equation (4.2.28) that for

large angles φ, the slippage length is sL “ Rφ3

24
. This circumstance can be accounted for

in the calculation of the differential CSR kick function by replacing the lower integration
limit in Equation (4.2.36) by s0 Ñ s´ sL.
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5 Microbunching Instability

In the previous sections, the single-particle dynamics as well as the collective effects
that occur in free-electron laser injector beamlines were introduced. The longitudinal
single-particle dynamics are dominated by the compression of the bunch in the bunch-
compression stages. Collective effects occur due to space-charge forces, radiative inter-
action in dipole magnets, and wakefields in the acceleration cavities. In this section, it
is investigated how the combination of bunch compression and collective interaction can
drive a beam instability in the longitudinal phase-space, which can lead to pronounced
inhomogeneities in the longitudinal charge-density of the electron bunch, as well as mod-
ulations of the particle energy along the bunch. These inhomogeneities take the form of
a series of localized regions of high charge-density separated by regions of low charge-
density. Due to this partitioning of the bunch into much smaller microbunches the pro-
cess is referred to as the microbunching instability (MBI). To study the microbunching
instability, we start by developing a perturbation theory based on the Fréchet–Taylor
expansion of collective Perron–Frobenius operators. A brief summary of parts of the
results presented in this section is given in reference [79] by the author.

5.1 Expansion of Collective Perron–Frobenius Operators

As shown in section 2.3.7, a collective Perron–Frobenius operator Mr¨s can be inter-
preted as an operator that takes a phase-space density, which lives on a Banach space
of Lesbeque integrable functions W, and produces an element of the group of Perron–
Frobenius operators

Mr¨s : W Ñ PF . (5.1.1)

The following perturbative approach is based on the expansion of a collective PF operator
with respect to this collective dependence utilizing its Fréchet derivatives.

Definition 1 (Fréchet derivative). Let V , W be normed K-vector spaces and U Ď V

open. Let f : V Ñ W . If for all x P U a linear and bounded operator Dfpxq P linpV,W q
exists so that for any h P V it is

lim
}h}V Ñ0

}fpx` hq ´ fpxq ´Dfpxqh}W
}h}V

“ 0, (5.1.2)

then Dfpxq is unique and is called the Fréchet derivative of f at x and f is called Fréchet
differentiable on U [80].

From Definition 1, it follow that Fréchet derivatives are defined only for mappings
between two vector spaces. However, the codomain of collective PF operators is the
group of PF operators, which in fact do not form a vector space. PF operators, however,
form a subset of the linear maps between phase-space densities

linpW,Wq Ą PF , (5.1.3)
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which indeed do form a K-vector space with respect to addition and scalar multiplication
with any λ P K. Moreover, together with operator composition as the multiplicative
operation, linpW,Wq forms an unitary associative K-algebra, as shown in Section 2.3.3,
which we will refer to as an “algebra” without explicitly mentioning the unitarity and
associativity.

A collective PF operator can therefore also be considered a mapping between W and
the larger space of linear endomorphisms of W, which is a superset of the PF operators:

Mr¨s : W Ñ linpW,Wq. (5.1.4)

By enlarging the codomain in this way, Mr¨s is now a map between two vector spaces,
so that we can now meaningfully assign Fréchet derivatives to collective PF operators.

If Mr¨s is Fréchet differentiable on the open subset U Ă W , it can be seen that the
collective PF operator of a sum of two PSDs Ψ, φ P U can be written as

MrΨ ` φs “ MrΨs `DMrΨsφ ` op}φ}q. (5.1.5)

Definition 2 (Higher order Fréchet derivatives). Let V , W be normed K-vector spaces
and U Ď V open. Let f : V Ñ W . f is Fréchet differentiable n times on U , exactly if
the Fréchet derivative Df exists and is Fréchet differentiable pn´ 1q times on U .

If the collective PF operator Mr¨s is N times Fréchet differentiable at Ψ, thenMrΨ`
φs can be expanded into a truncated Taylor series

MrΨ ` φs “
Nÿ

n“0

1

n!
Dn

MrΨsφn ` op}φ}N q, (5.1.6)

where DnM rΨs is the nth Fréchet derivative of Mr¨s at Ψ and the remainder term
op}φ}N q denotes all terms of order higher than N [80].

From the definition of a Fréchet derivative, it follows that DnM rΨs is a linear map
of the form

W Ñ linpW, linpW, . . .looooooooomooooooooon
ˆn

q . . . q. (5.1.7)

This can equivalently be interpreted as a multi-linear map Wn Ñ linpW,Wq. The
expression DnMrΨsφn then denotes the evaluation of that map at pφ, ¨ ¨ ¨ , φlooomooon

ˆn

q.

5.2 Perturbation Theory

It is important to note that the microbunching instability is an amplification process,
in the sense that it can can only amplify or attenuate preexisting inhomogeneities in
the PSD. In turn, this implies that if a PSD does not feature inhomogeneities initially,
there is nothing to be amplified and the microbunching instability will not occur. In
particular, the microbunching instability cannot induce inhomogeneities into an initially
homogeneous PSD.

This circumstance opens up an opportunity of systematically studying the MBI by
means of a perturbative approach. One can envision a PSD Ψ0 which is sufficiently
homogeneous, so that it is not affected by the instability. Most generally, in a collective
system, any PSD propagates via a collective Perron–Frobenius operator

Ψ0 ÞÑ MrΨ0sΨ0 ” Ψ1. (5.2.1)
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In this perturbation theory, the behavior of a PSD Ψ0 ` ǫφ0 is studied that consists of
a homogeneous PSD Ψ0 which is perturbed by a second PSD φ0, where the strength of
the perturbation is governed by the perturbation parameter R Q ǫ ! 1. This pertur-
bation introduces the initial inhomogeneities which seed the microbunching instability.
The effect induced by the MBI can then be studied by comparing the evolution of the
undisturbed PSD with that of the disturbed PSD. Of particular interest is the evolution
of the perturbation function φ0.

Just as in the unperturbed case, also the perturbed PSD is propagated by a collective
PF operator

Ψ0 ` ǫφ0 ÞÑ MrΨ0 ` ǫφ0spΨ0 ` ǫφ0q. (5.2.2)

It is important to note that while a collective PF operator is – just as any other PF
operator – linear with respect to the PSD that it propagates

MrΨ0 ` ǫφ0spΨ0 ` ǫφ0q “ MrΨ0 ` ǫφ0sΨ0 ` ǫMrΨ0 ` ǫφ0sφ0, (5.2.3)

it is generally non-linear with respect to its collective dependence

MrΨ0 ` ǫφ0spΨ0 ` ǫφ0q ‰ MrΨ0spΨ0 ` ǫφ0q ` ǫMrφ0spΨ0 ` ǫφ0q. (5.2.4)

Due to this non-linearity, it is not immediately possible to isolate the term corresponding
to the propagated unperturbed part, MrΨ0sΨ0, in Equation (5.2.2) so that an expression
for the propagated disturbance function cannot be extracted.

As a remedy, the collective PF operator is expanded with respect to its collective
dependence into the Fréchet–Taylor series (5.1.6). Then, the right-hand side of Equa-
tion (5.2.2) reads

MrΨ0 ` ǫφ0spΨ0 ` ǫφ0q “
˜

Nÿ

n“0

1

n!
ǫnDnMrΨ0sφn0 ` ǫNo

`
}φ0}N

˘
¸

pΨ0 ` ǫφ0q. (5.2.5)

Rearranging the sum by equal orders of the perturbation parameter ǫ yields

MrΨ0 ` ǫφ0spΨ0 ` ǫφ0q “MrΨ0sΨ0 `
Nÿ

n“1

1

n!
ǫn

`
Dn

MrΨ0sφn0Ψ0 ` nDn´1
MrΨ0sφn0

˘

` ǫNo
`
}φ0}N

˘
. (5.2.6)

We see that in Equation (5.2.6), the term of the propagated unperturbed PSD MrΨ0sΨ0

is now isolated. The contribution of the perturbation φ0 is fully contained in the terms
in the sum. By defining the nth order propagated perturbation density

φ1,n ” Dn
MrΨ0sφn0Ψ0 ` nDn´1

MrΨ0sφn0 (5.2.7)

Equation (5.2.6) can be written more concisely as

MrΨ0 ` ǫφ0spΨ0 ` ǫφ0q “ Ψ1 `
Nÿ

n“1

1

n!
ǫnφ1,n ` ǫNo

`
}φ0}N

˘
. (5.2.8)

This is as far as we will formulate the perturbation theory for an arbitrary unperturbed
initial PSD, an arbitrary perturbation density, and an arbitrary collective PF opera-
tor. In order to arrive at a closed-form expression for the propagated perturbation
densities, it is necessary to derive an explicit expression for the Fréchet derivatives in
Equation (5.2.7).
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5.3 Collective-Kick Perron–Frobenius Operators

Of particular interest for the microbunching instability is the collective interaction via
longitudinal space-charge forces and via coherent synchrotron radiation. Both of these
interactions manifest themselves as a kick map that effects the energy coordinate of a
particle, depending on its longitudinal position. The local strength of the kick is given
by a function that depends on the charge-density function of the bunch. In particular,
this kick function is generally given as the solution of a Poisson equation with the charge
density as the source term. A collective kick map of this type can then be written as

KrΨs : pq, pqT ÞÑ pq, p ` krΨspqqqT, (5.3.1)

where the collective kick function krΨs is given by the convolution of the charge density
of the PSD with the Green’s function G of the underlying Poisson equation

krΨspqq “
ĳ

R2

Gpq, q1qΨpq1, p1qdq1 dp1 ” rG f Ψspqq, (5.3.2)

where we have introduced the symbol f as a short hand for the convolution with re-
spect to the q dimension together with a simultaneous projection along the p dimension,
dropping the function arguments to avoid overly lengthy notation. It can be shown that
the Green’s function Gpq, q1q of the free-space Poisson equation actually depends only
on the difference of its arguments, q´ q1. Here, the symbol G shall be used for both, the
one-parameter and the two-parameter versions of the Green’s function

Gpq, q1q ” Gpq ´ q1q. (5.3.3)

As the integral in Equation (5.3.2) is linear with respect to both, Ψ and G, the f-
operation is bilinear. Consequently, also the kick function is linear in its dependence on
the PSD: For all Ψ,Φ P W and µ, ν P R it is

krµΨ ` νΦs “ G f pµΨ ` νΦq “ µpG f Ψq ` νpG f Φq “ µkrΨs ` νkrΦs. (5.3.4)

From Equation (5.3.1) we see that the linearity of the kick function implies that the kick
map generated by the sum of any two PSDs Ψ,Φ P W is equal to the composition of the
kick maps generated by the individual PSDs

KrΨ ` Φs “ pq, pqT ÞÑ pq, p` krΨspqq ` krΦspqqqT (5.3.5)

“
“
pq, pqT ÞÑ pq, p ` krΨspqqqT

‰
˝
“
pq, pqT ÞÑ pq, p` krΦspqqqT

‰
(5.3.6)

“ KrΨs ˝KrΦs “ KrΦs ˝KrΨs, (5.3.7)

from which we note that all kicks commute. Consequently, the same relation holds for
the Perron–Frobenius operator corresponding to this map: For any φ P W, it is

KrΨ ` Φsφpzq “ φ
`
KrΨ ` Φs´1pzq

˘
“ φ

`
tKrΨs ˝KrΦsu´1pzq

˘
(5.3.8)

“ φ
`
tKrΦs´1 ˝ KrΨs´1upzq

˘
“ φ

`
KrΦs´1pKrΨs´1pzqq

˘
(5.3.9)

“ KrΨsφ
`
KrΦs´1pzq

˘
(5.3.10)

“ KrΨsKrΦsφ pzq “ KrΦsKrΨsφ pzq . (5.3.11)

In general, the relation
MrΨ ` Φs “ MrΨsMrΦs (5.3.12)

defines a class of collective PF operators, which we call homomorphic collective PF
operators. Another fitting term for this property would be “quasi-exponential”. In the
following, some general properties of the Fréchet derivatives of members of this class –
and therefore in particular of collective kick operators – are derived.
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5.4 Fréchet Derivatives of Homomorphic Perron–Frobenius

Operators

In general, a collective PF operator Mr¨s : W Ñ linpW,Wq is a mapping from the
Banach space W of the phase-space densities to the space of linear automorphism of the
same space. By definition, the underlying vector space of W, which is the domain of
Mr¨s, constitutes an Abelian group under addition. It can be seen that linpW,Wq forms
an associative algebra over R, where pointwise addition and operator concatenation are
the addition and multiplication operation, respectively. With this in mind, we see that
Equation (5.3.12) describes the condition for Mr¨s to be a homomorphism between the
vector space W and the algebra linpW,Wq, with respect to its multiplication operation.
We therefore define the following notion of a homomorphic maps from vector spaces to
algebras.

Definition 3 (Vector-Space-to-Algebra Homomorphism). Let pV,K,`q and pW,K,`q
be vector spaces over a field K. Let A be the algebra pW,K,`, ˚q defined by pW,K,`q
together with the multiplicative operation ˚ :W ˆ W Ñ W . A map f : V Ñ A is called
homomorphic exactly if fpx` yq “ fpxq ˚ fpyq for all x, y P V .

For these homomorphisms, it is possible to prove a powerful statement regarding
their Fréchet derivatives. It states that the local Fréchet derivative of a homomorphism
is given by its local value multiplied with its Fréchet derivative evaluated at the zero
element of the domain vector space.

Theorem 2 (Fréchet Derivative of a Vector-Space-to-Algebra Homomorphism.). Let
pV,K,`q, pW,K,`q be a normed vector spaces. Let A be the algebra pW,K,`, ˚q. Let
f : V Ñ A be a bounded homomorphism. If f is Fréchet differentiable at 0, then f is
Fréchet differentiable on V and its Fréchet derivative at x P V is given by

Dfpxq “ fpxq ˚ Dfp0q (5.4.1)

Proof. From the fact that f is homomorphic, we see

}fpx` hq ´ fpxq ´Dfpxqh}W “ }fpxq ˚ pfphq ´ IdW q ´Dfpxqh}W . (5.4.2)

Using fphq “ fp0q `Dfp0qh ` op}h}V q and fp0q “ IdW , this yields

}fpxq ˚ pfphq ´ IdW q ´Dfpxqh}W (5.4.3)

“}fpxq ˚ Dfp0qh ´Dfpxqh` fpxq ˚ op}h}V q}W (5.4.4)

ď}fpxq ˚ Dfp0qh ´Dfpxqh}W ` }fpxq ˚ op}h}V q}W (5.4.5)

ď}fpxq ˚ Dfp0qh ´Dfpxqh}W ` }fpxq}W op}h}V q. (5.4.6)

Therefore, it is

Dfpxq “ fpxq ˚Dfp0q ðñ lim
}h}V Ñ0

}fpx` hq ´ fpxq ´Dfpxqh}W
}h}V

“ 0. (5.4.7)

Further, it is possible to show that higher-order Fréchet derivatives of homomorphic
Vector-Space-to-Algebra maps are given by repeated application of the first-order Fréchet
derivative.
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Theorem 3 (Higher-order Fréchet Derivatives of Vector-Space-to-Algebra Homomor-
phisms.). Let pV,`q, pW,`q be normed vector spaces. Let A be the algebra pW,`, ˚q. Let
f : V Ñ A be a bounded Fréchet differentiable homomorphism. Then, for n ě 1 the nth
Fréchet derivative of f is given by

pDnfpxqqyn “ fpxq ˚ pDfp0q yqn. (5.4.8)

Proof. For n “ 1 the theorem is proven in Theorem 2. For n ą 1, the theorem is proven
by induction as follows. For the pn` 1qst Fréchet derivativ, it is with x, h, g P V

0 “ lim
}h}V Ñ0

1

}h}V
}Dnfpx` hq gn ´Dnfpxq gn ´Dn`1fpxq gnh}W (5.4.9)

“ lim
}h}V Ñ0

1

}h}V
}pfpx` hq ´ fpxqq ˚ pDfp0q gqn ´Dn`1fpxq gnh}W (5.4.10)

“ lim
}h}V Ñ0

1

}h}V
}pDfpxqh ` op}h}V qq ˚ pDfp0q gqn ´Dn`1fpxq gnh}W (5.4.11)

ď lim
}h}V Ñ0

1

}h}V
}Dfpxqh ˚ pDfp0q gqn ´Dn`1fpxq gnh}W (5.4.12)

“ lim
}h}V Ñ0

1

}h}V
}fpxq ˚ Dfp0qh ˚ pDfp0q gqn ´Dn`1fpxq gnh}W , (5.4.13)

which implies
Dn`1fpxqgn h “ fpxq ˚Dfp0qh ˚ pDfp0q gqn. (5.4.14)

Setting h “ g “ y, this shows that

Dn`1fpxqyn`1 “ fpxq ˚ pDfp0q yqn`1. (5.4.15)

It can also be seen how Fréchet derivatives of Vector-Space-to-Algebra maps behave
under application of the binary operation of the codomain algebra.

Theorem 4. Let pV,`q, pW,`q be normed vector spaces. Let A be the algebra pW,`, ˚q.
Let f : V Ñ A be Fréchet differentiable at x P V . Then, for all y P V , g P A

Dpfpxq ˚ gq y “
`
Dfpxq y

˘
˚ g (5.4.16)

and
Dpg ˚ fpxqq y “ g ˚ Dfpxq y. (5.4.17)

Proof. First, Equation (5.4.16) is proven. The proof for Equation (5.4.17) follows by
analogy. Let upxq “ fpxq ˚ g, then

0 “ lim
}h}V Ñ0

}upx` hq ´ upxq ´Dupxqh}W
}h}V

(5.4.18)

“ lim
}h}V Ñ0

}rfpx` hq ´ fpxqs ˚ g ´Dupxqh}W
}h}V

(5.4.19)

“ lim
}h}V Ñ0

}rDfpxqh` op}h}V qs ˚ g ´Dupxqh}W
}h}V

(5.4.20)

ď lim
}h}V Ñ0

}Dfpxqh ˚ g ´Dupxqh}W
}h}V

, (5.4.21)

which implies
Dpfpxq ˚ gq y “ Dfpxq y ˚ g. (5.4.22)
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Note that Theorem 4 holds for general Vector-Space-to-Algebra maps, not only for
homomorphisms.

5.4.1 Linearly Collective Hamiltonians

Consider a system with a homomorphic collective Perron–Frobenius operatorM r¨s : W Ñ
linpW,Wq that can be expressed in terms of a Lie series, as defined in Section 2.3.5, with
the collective Hamiltonian Hr¨s : W Ñ C1pR2,Rq

MrΨs “ expp:HrΨs :q. (5.4.23)

If this Hamiltonian depends linearly on the phase-space density, in the sense that for all
µ, ν P R and Ψ,Φ P W it is

HrµΨ ` νΦs “ µHrΨs ` νHrΦs, (5.4.24)

then it can be seen that the Fréchet derivative of operators of this type can be calculated
explicitly.

Theorem 5 (Fréchet Derivative of homomorphic Perron–Frobenius Operators with
linearly collective Hamiltonians). Let Mr¨s : W Ñ linpW,Wq be homomorphic. Let
Mr¨s : Ψ ÞÑ expp:HrΨs :q, where Hr¨s : W Ñ C1pR2,Rq is linear. Then for all Ψ P W

DMrΨs ¨ “ MrΨs :Hr¨s :, (5.4.25)

in the sense that DMrΨsφ “ MrΨs :Hrφs :

Proof.

0 “ lim
}φ}WÑ0

}MrΨ ` φs ´ MrΨs ´DMrΨsφ}linpW ,Wq

}φ}W
(5.4.26)

“ lim
}φ}WÑ0

}MrΨspMrφs ´ Idq ´DMrΨsφ}linpW ,Wq

}φ}W
(5.4.27)

“ lim
}φ}WÑ0

}MrΨspexpp:Hrφs :q ´ Idq ´DMrΨsφ}linpW ,Wq

}φ}W
(5.4.28)

“ lim
}φ}WÑ0

}MrΨsp:Hrφs : `op}φ}qq ´DMrΨsφ}linpW ,Wq

}φ}W
(5.4.29)

ď lim
}φ}WÑ0

}MrΨs :Hrφs : ´DMrΨsφ}linpW ,Wq

}φ}W
, (5.4.30)

which implies
DMrΨsφ “ MrΨs :Hrφs : . (5.4.31)

We note that the requirement for Hr¨s to be linear was not used explicitly in the
proof of Theorem 5. Nevertheless, the Hamiltonian indeed does need to be linear in
its collective dependence as otherwise the Fréchet derivative DMrΨs ¨ ” MrΨs :Hr¨s :
would not be a linear operator, which is required by its definition.

Neither does the linearity of the collective Hamiltonian imply that the collective
Perron–Frobenius operator is homomorphic, nor vice versa. It can, however, be shown
that if in addition to its linearity the Lie operators of the Hamiltonians commute for all
phase-space densities, then the Perron–Frobenius operator is homomorphic.
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Theorem 6. Let Mr¨s : Ψ ÞÑ expp:HrΨs :q, where Hr¨s : W Ñ C1pR2,Rq is linear and
let H be such that for all Ψ,Φ P W it is

r:HrΨs :, :HrΦs :s “ 0, (5.4.32)

where r¨, ¨s denotes the Lie commutator rA,Bs “ AB´BA. Then Mr¨s is homomorphic
in the sense of Definition 3.

Proof. From the linearity of the Hamiltonian and the Poisson bracket, we see

MrΨ ` Φs “ expp:HrΨ ` Φs :q “ expp:HrΨs : ` :HrΦs :q. (5.4.33)

Using the Baker-Campbell-Hausdorff identity exppA`Bq “ exppAq exppBq for operators
A,B with vanishing commutator, rA,Bs “ 0, it can be seen that

MrΨ ` Φs “ expp:HrΨs :q expp:HrΦs :q “ MrΨsMrΦs. (5.4.34)

Together with Theorem 3, we see that if Hr¨s is linear and self-commutative – as
required by Theorem 6 – then the higher order Fréchet derivatives of the associated
Perron–Frobenius operator MrΨs “ expp:HrΨs :q are given by repeated application of
the Lie operator of the collective Hamiltonian

Dn
MrΨsφn “ MrΨspDMr0sφqn “ MrΨspMr0s :Hrφs :qn “ MrΨs :Hrφs :n, (5.4.35)

where we have used the identity Mr0s ” Id, which follows from the fact that the Perron–
Frobenius operator is homomorphic. The notation :Hr¨s :n is used in the sense that

:Hr¨s :n φn ”:Hrφs :n, (5.4.36)

which allows the higher-order derivatives to be written in operator form

DnMrΨs “ MrΨs :Hr¨s :n . (5.4.37)

5.5 Fréchet Derivatives of Collective-Kick Operators

After having derived some general statements about homomorphic Perron–Frobenius
operators, these results are in the following applied to our specific case at hand – namely
collective kicks as introduced in Section 5.3. We have already seen that Perron–Frobenius
operators of collective kicks are homomorphic in their collective dependence. In order
to make use of Theorem 5, it is additionally necessary to show that collective kick maps
are generated by linearly collective Hamiltonians.

It can be seen that a kick map of the form

K : pq, pqT ÞÑ pq, p ` kpqqqT (5.5.1)

is generated by the Hamiltonian Hpq, pq “ ´κpqq, where κpqq is the anti-derivative of
the kick function kpqq with

Bκpqq
Bq “ kpqq. (5.5.2)

With this Hamiltonian, it is

:H : q “ 0, :H : p “ ´Bκpqq
Bq “ ´kpqq (5.5.3)
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and consequently for n ą 1

:H :n q “ 0, :H :n p “ 0. (5.5.4)

Therefore, the exponential map expp´ :H :q is exactly the map given in Equation (5.5.1)

expp´ :H :qq “ q, expp´ :H :qp “ p´ :H : p “ p` kpqq. (5.5.5)

This derivation is also applicable the kick function has a collective dependence on the
phase-space density as in Equation (5.3.2). Here, the phase-space density is merely a
parameter used to determine the kick function and does not add any functional de-
pendencies on the phase-space coordinates. Using the anti-derivative Γ of the Green’s
function G, which is defined by

BΓpq, q1q
Bq “ Gpq, q1q (5.5.6)

and assuming that both, Gpq, q1q and Γpq, q1q, exist and are continuous everywhere, then
the anti-derivative of k can be written as

κrΨspqq “ rΓ f Ψspqq. (5.5.7)

This follows from the Leibniz integral rule [81], which in this case states that the differ-
entiation and integral operation in

B
Bq κrΨspqq “ B

Bq rΓ f Ψspqq “ B
Bq

ĳ

R2

Γpq, q1qΨpq1, p1qdq1 dp1 (5.5.8)

“
ĳ

R2

B
BqΓpq, q1qΨpq1, p1qdq1 dp1 “

ĳ

R2

Gpq, q1qΨpq1, p1qdq1 dp1 (5.5.9)

“ rG f Ψspqq “ krΨspqq (5.5.10)

are interchangeable. Analogously to the non-collective case, we therefore see that the
collective Hamiltonian

HrΨspq, pq ” ´rΓ f Ψspqq (5.5.11)

generates the collective kick map shown in Equation (5.3.1)

expp´ :HrΨs :q “ KrΨs. (5.5.12)

The linearity of this collective Hamiltonian with respect to its phase-space density pa-
rameter follows immediately from the bilinearity of the f operator.

This shows that Perron–Frobenius operators of collective kicks of this type are gen-
erated by a linearly collective Hamiltonian. Together with the fact that these Perron–
Frobenius operators are homomorphic – which was shown in Section 5.3 – this implies
the theorems introduced in Section 5.4 are indeed applicable to these operators and can
be used to determine their Fréchet derivatives.

5.6 Expansion of a Single Microbunching Step

After having laid much groundwork regarding Fréchet derivatives of Perron–Frobenius
operators, we are now in a good position to actually apply our findings to a concrete
physically relevant scenario. Consider a single bunch compression stage, consisting of
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a long linac section followed by a magnetic chicane. In an ultra-relativistic model, the
dynamics of the longitudinal phase-space can be reduced to the kick introduced by
the accelerating cavities, which we will denote by the map Kacc : R

2 Ñ R
2, plus a

collective kick, KrΨscoll : R2 Ñ R2, generated by the self-interaction due to collective
forces such as longitudinal space-charge forces or wake fields. We assume that the
KrΨscoll is generated by a Hamiltonian Hr¨s with a linear collective dependence as in
Equation (5.5.11). As all kick maps commute, the order of these kicks is not relevant.
Velocity effects are neglected here, which is a valid approximation in the ultra-relativistic
limit. Omitting CSR-kicks, the longitudinal dynamics in a magnetic chicane are governed
by the longitudinal dispersion it produces, which can be represented by a single drift map
Dchic : R

2 Ñ R
2. The Perron–Frobenius operator M rΨs of a single bunch compression

stage is then given by

MrΨs “ DchicKaccKrΨscoll “ M0KrΨscoll, (5.6.1)

where Ψ is the phase-space density at the beginning of the stage and we have assigned
the symbol M0 ” DchicKacc to the non-collective part of the total Perron–Frobenius
operator. We make the approximation that both, the kick-function of the RF-modules
and the dispersive drift-function of the magnetic chicane, are linear. This allows to use
the symplectic LDU decomposition (3.4.6) of the non-collective map so that M0 can be
written as

M0 “ KCh SC DCβ, (5.6.2)

where K,S, and D are the Perron–Frobenius operators of the kick-, compression-, and
drift-maps defined in Section 3.4, respectively. Using Theorem 4, the Fréchet derivative
of this operator can be seen to be

DMrΨs “ M0DKrΨscoll. (5.6.3)

By repeated application of the theorem it follows that the higher-order derivatives are
given by

DnMrΨs “ M0D
nKrΨscoll. (5.6.4)

As KrΨs is generated by a linear Hamiltonian KrΨscoll “ expp´ :HcollrΨs :q, the Perron–
Frobenius operator is given by KrΨscoll “ expp:HcollrΨs :q and we see via Theorem 5 and
Equation (5.4.37) that

Dn
MrΨs “ M0 KcollrΨs :Hcollr¨s :n . (5.6.5)

Using the definition of MrΨs, this can be written concisely as

Dn
MrΨs “ MrΨs :Hr¨s :n, (5.6.6)

where here and in the following we drop the subscript of the collective Hamiltonian for
notational brevity and set Hr¨s ” Hcollr¨s.

With this expression for the higher-order derivatives at hand, we can now turn to
the evaluation of the perturbation theory introduced in Section 5.2. From the definition
of the propagated perturbation densities (5.2.7)

φ1,n ” DnMrΨ0sφn0Ψ0 ` nDn´1MrΨ0sφn0 , (5.6.7)

we see by plugging in Equation (5.6.6)

φ1,nrφ0s “ MrΨ0s
`
:Hrφ0s :n Ψ0 ` n :Hrφ0s :n´1 φ0

˘
(5.6.8)

“ MrΨ0s :Hrφ0s :n´1 p:Hrφ0s : Ψ0 ` nφ0q , (5.6.9)

where we additionally introduced the notation φ1,nr¨s to denote the functional depen-
dence on the perturbation density.
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5.6.1 Monochromatic Perturbation

One of the goals of this investigation of the microbunching instability is to provide
insights on how the amplification factor depends on longitudinal scale of the initial
perturbation. To this end, initial perturbation φ0 are considered that are equal to
the initial undisturbed phase-space density Ψ0 but modulated sinusoidally on a single
wavelength 2π{k, with k P R

`, along the longitudinal dimension:

ϕkpq, pq ” cospkqqΨ0pq, pq “ 1

2

”
eipkqq ` e´ipkqq

ı
Ψ0pq, pq. (5.6.10)

Introducing akpqq ” 1
2
eikq, this can be written more concisely as

ϕkpq, pq “ rakpqq ` ākpqqsΨ0pq, pq. (5.6.11)

Further, it is assumed that the initial unperturbed phase-space density does not depend
on the longitudinal coordinate and is determined solely by an energy distribution ψppq

Ψ0pq, pq “ ψppq, (5.6.12)

where
ş
R
ψppqdp “ ρ0 and ρ0 denotes the value of the constant longitudinal charge

density.

Physically, this corresponds to the case of an infinitely long, homogeneous bunch or,
equivalently, a homogeneous bunch with finite longitudinal length, where edge effects
are neglected. If we take lb to be this finite length, then it is ρ0 « l´1

b . We note that
the function Ψ0 as defined in Equation (5.6.12) is not integrable over R

2 and therefore
is not a member of W. This technicality can be circumvented formally by truncating Ψ0

at an arbitrarily large but finite value of q, using a smooth cutoff function χlbpqq so that
Ψ0pq, pq “ ψpqqχlbpqq. A suitable χlbpqq can be constructed for instance by convolving
the rectangle function with length lb with an appropriate kernel function. The original
phase-space density (5.6.12) can then always be recovered by taking the limit lb Ñ 8.
Therefore, the results based on the assumption that Ψ0 P W are still valid in the case
of an infinitely long bunch.

It can be seen that the unperturbed density (5.6.12) does not produce collective
kicks, as the collective Hamiltonian is constant

HrΨ0s “ ´ΓfΨ0 “ ´
ĳ

R2

Γpq´ q1qψpp1qdq1 dp1 “ ´ρ0
ż

R

Γpq´ q1qdq1 “ const. (5.6.13)

For this choice of Ψ0, it therefore is KcollrΨ0s “ Id and consequently

MrΨ0s “ M0. (5.6.14)

5.6.1.1 General Identities

Before continuing, we will derive some identities, which will be useful in the further
evaluation. From the definition of akpqq, it can be seen that

ak1pqqak2pqq “ 1

2
ak1`k2pqq (5.6.15)

and

āk “ a´k. (5.6.16)
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Hence, in particular it is

akāk “ 1

2
a0 “ 1

4
. (5.6.17)

We note that a Hamiltonian of the form Hrakψs can be written as

Hrakpqqψppqs “ ´
ż

R

Γpq ´ q1qakpq1qdq1

ż

R

ψpp1qdp1 “ ´ρ0
ż

R

Γpq ´ q1qakpq1qdq1

“ ρ0

ż

R

Γpq1qakpq ´ q1qdq1 “ ρ0akpqq
ż

R

Γpq1qe´ikq1

dq1 (5.6.18)

“ ρ0akpqqΓ̃pkq, (5.6.19)

where Γ̃ denotes the Fourier transform of Γ. Analogously, Hrākψs is given by

Hrākψs “ ρ0ākpqq
ż

R

Γpq1qeikq1

dq1 “ ρ0ākpqqΓ̃p´kq “ ρ0ākpqqΓ̃pkq “ Hrakψs. (5.6.20)

At this point, we define the function

W pkq ” ρ0

ż

R

Gpqqe´ikq dq “ ikρ0

ż

R

Γpqqe´ikq dq “ ikρ0Γ̃pkq, (5.6.21)

which – in a slight abuse of the term – we refer to as an impedance function. Conven-
tionally, an impedance function is denoted with the symbol W pkq and its unit is Ohm.
In our definition, the impedance W has the same unit as the conjugate momentum p,
which is eV. Our impedance function is related to the conventional impedance function
by multiplication with the bunch charge Qb and the elementary charge

W pkq “ eQb Zpkq. (5.6.22)

As both definitions differ only by a constant factor and describe the same physical con-
cept, calling W pkq an impedance function is justified and will help the comprehensibility
more than introducing a new term for it. With this definition of the impedance function,
we get for the partial derivatives of the Hamiltonian

B
BqHrakψs “ ikakpqqρ0Γ̃pkq “ akpqqW pkq (5.6.23)

and
B

BpHrakψs “ 0, (5.6.24)

so that the Lie operator :Hrakψs : can be written as

:Hrakψs :“ BHrakψs
Bq

B
Bp ´ BHrakψs

Bp
B
Bq “ W pkqakpqq B

Bp . (5.6.25)

Composing two Lie operators therefore yields

:Hrak2ψs ::Hrak1ψs :“ 1

2
W pk2qW pk1qak2`k1pqq B2

Bp2 , (5.6.26)

or more generally for any number N of Lie operators

Nź

i“1

:Hrakiψs :“ 1

2N´1

˜
Nź

i“1

W pkiq
¸
ařN

i“1
ki

pqq Bn
Bpn . (5.6.27)

Explicitly, for all functions f, g P C1pR,Rq it is

:Hrakψs : fpqqgppq “ fpqqW pkqakpqqBg
Bp ppq, (5.6.28)

and in particular

:Hrak1ψs : ak0pqqψppq “ 1

2
W pk1qak1`k0pqqBψ

Bp ppq. (5.6.29)
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5.6.1.2 First Order

From Equation (5.6.9), it can be seen that the general expression of the first-order
propagated perturbation function reads

φ1,1rϕks “ M0 p:Hrϕks : Ψ0 ` ϕkq , (5.6.30)

which we note to be linear with respect to ϕk. Plugging in ϕk from Equation (5.6.11)
together with Ψ0 from Equation (5.6.12) yields

φ1,1rϕks “ φ1,1rakψ ` ākψs “ φ1,1rakψs ` φ1,1rākψs. (5.6.31)

Using Equation (5.6.25) to evaluate the Lie operator, the first term can be written as

φ1,1rakψs “ M0p:Hrakψs : ψ ` akψq “ M0

ˆ
akpqq

„
1 `W pkq B

Bp


ψppq

˙
. (5.6.32)

With this, the total first-order propagated perturbation function φ1,1rϕks can be recon-
structed from Equation (5.6.31):

φ1,1rϕks “ φ1,1rakψs ` φ1,1rākψs “ M0

ˆ
akpqq

„
1 `W pkq B

Bp


ψppq

˙
` c.c. . (5.6.33)

Therefore, the first-order propagated perturbation density has the same frequency in the
q-dimension as the initial perturbation.

5.6.1.3 Second Order

For the second-order propagated perturbation, Equation (5.6.9) yields

φ1,2rϕks “ M0 :Hrϕks : p:Hrϕks : Ψ0 ` 2ϕkq . (5.6.34)

As before, we set ϕkpq, pq “ rakpqq ` ākpqqsΨ0pq, pq and Ψ0pq, pq “ ψppq. Here, however,
unlike before the second-order propagated perturbation density does not depend linearly
on the initial perturbation, so that φ1,2rϕks cannot be constructed from the sum of
φ1,2rakψs and φ1,2rākψs. Instead, using the linearity of :Hr¨s : we get

φ1,2rϕks “ M0 :Hrakψ ` ākψs : p:Hrakψ ` ākψs : ψ ` 2akψ ` 2ākψq (5.6.35)

“ M0 p:Hrakψs : ` :Hrākψs :q p:Hrakψs : ψ` :Hrākψs : ψ ` 2akψ ` 2ākψq (5.6.36)

“ M0

´
:Hrakψs :2 ψ` :Hrakψs ::Hrākψs : ψ

` 2 :Hrakψs : akψ ` 2 :Hrakψs : ākψ
¯

` c.c. . (5.6.37)

The terms in the parenthesis can be evaluated using Equations (5.6.25)–(5.6.29):

:Hrakψs :2 ψ “ 1

2
W pkq2a2kpqqB2ψ

Bp2 (5.6.38)

:Hrakψs ::Hrākψs : ψ “ 1

4
W pkqW p´kqB2ψ

Bp2 “ |W pkq|2
2

B2ψ
Bp2 (5.6.39)

2 :Hrakψs : akψ “ W pkqa2kpqqBψ
Bp (5.6.40)

2 :Hrakψs : ākψ “ 1

2
W pkqBψ

Bp . (5.6.41)
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We see that the second order perturbation density consists of a term that is independent
on the q coordinate, and a term with two times the frequency of the initial perturbation
with respect to q:

φ1,2rϕks “ M0

˜
a2kpqq

„
W pkq2

2

B2
Bp2 `W pkq B

Bp


`

«
|W pkq|2

4

B2
Bp2 ` W pkq

2

B
Bp

ff¸
ψ ` c.c. .

(5.6.42)

5.6.1.4 Higher Order

To investigate propagated perturbation densities of higher order, we write Equation (5.6.9)
as

φ1,nrϕks “ M0

`
:Hrϕks :n ψ ` n :Hrϕks :n´1 ϕk

˘
, (5.6.43)

which is a sum of two terms involving powers of :Hrϕks :. Plugging in the monochromatic
perturbation (5.6.11), it can be seen that :Hrϕks :n can be written as

:Hrϕks :n“:Hrpak ` ākqψs :n“ p:Hrakψs : ` :Hrākψs :qn. (5.6.44)

Because the above Lie operators commute, this expression can be evaluated using the
binomial formula:

:Hrϕks :n “
nÿ

m“0

ˆ
n

m

˙
:Hrakψs :n´m :Hrākψs :m (5.6.45)

“ 1

2n´1

nÿ

m“0

ˆ
n

m

˙
W pkqn´mW pkqm apn´2mqkpqq Bn

Bpn (5.6.46)

“
nÿ

m“0

Sn,mpkq arn´2mskpqq Bn
Bpn , (5.6.47)

where we define

Sn,mpkq ” 1

2n´1

ˆ
n

m

˙
W pkqn´mW pkqm. (5.6.48)

We see that :Hrϕks :n contains terms with frequencies that are multiples of the initial
perturbation frequency j k, where j goes from ´n to n in steps of 2. It is worthwhile
to rewrite :Hrϕks :n with the multiple of the initial frequency as the summation index.
A concise way to rewrite the sum in that manner is to let j run from ´n to n in steps
of 1, but set to zero all those terms, where j R t´n,´n` 2, . . . , n ´ 2, nu. This can be
achieved by defining

Ŝn,j ”
#
Sn,pn´jq{2 if j P t´n,´n` 2, . . . , n´ 2, nu
0 otherwise .

(5.6.49)

We note that Ŝn,´j “ Ŝn,j. The values of Ŝn,j up to n “ 5 are summarized in Table 5.1.
The sum can then be written as

:Hrϕks :n“
nÿ

j“´n

Ŝn,jpkq ajkpqq Bn
Bpn . (5.6.50)
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Applying this to the monochromatic perturbation density yields

:Hrϕks :n ϕk “:Hrϕks :n pak ` ākqψ (5.6.51)

“ 1

2

nÿ

j“´n

Ŝn,jpkq
“
arj`1skpqq ` arj´1skpqq

‰ Bn
Bpnψ. (5.6.52)

Because it is Ŝn´1,n “ Ŝn´1,´n “ 0, also the term :Hrϕks :n´1 ϕk in Equation (5.6.43)
can be written as a sum from ´n to n

:Hrϕks :n´1 ϕk “ 1

2

n´1ÿ

j“´pn´1q

Ŝn´1,jpkq
“
arj`1skpqq ` arj´1skpqq

‰ Bn´1

Bpn´1
ψ (5.6.53)

“ 1

2

nÿ

j“´n

Ŝn´1,jpkq
“
arj`1skpqq ` arj´1skpqq

‰ Bn´1

Bpn´1
ψ. (5.6.54)

This sum can again be reordered with respect to terms of equal periodicity. It can be
seen that

nÿ

j“´n

Ŝn´1,j arj`1sk “
n`1ÿ

j“´n`1

Ŝn´1,j´1 ajk (5.6.55)

“
nÿ

j“´n

Ŝn´1,j´1 ajk ` Ŝn´1,n arn`1sk ´ Ŝn´1,´n´1 a´nk “
nÿ

j“´n

Ŝn´1,j´1 ajk, (5.6.56)

where we used that Ŝn´1,n “ Ŝn´1,´n´1 “ 0. Analogously, it is

nÿ

j“´n

Ŝn´1,j arj´1sk “
nÿ

j“´n

Ŝn´1,j`1 ajk. (5.6.57)

Plugging everything back into Equation (5.6.43), an explicit expression for the nth-
order propagated perturbation density is obtained

φ1,nrϕks “ M0

`
:Hrϕks :n Ψ0 ` n :Hrϕks :n´1 ϕk

˘
(5.6.58)

“ M0

nÿ

j“´n

ajkpqq
ˆ
Ŝn,jpkq Bn

Bpn ` n

2

”
Ŝn´1,j´1pkq ` Ŝn´1,j`1pkq

ı Bn´1

Bpn´1

˙
ψ (5.6.59)

“ M0

nÿ

j“´n

ajkpqq
ˆ
Ŝn,jpkq Bn

Bpn ` T̂n,jpkq Bn´1

Bpn´1

˙
ψ, (5.6.60)

where we define

T̂n,jpkq ” n
Ŝn´1,j´1pkq ` Ŝn´1,j`1pkq

2
. (5.6.61)

We note that T̂n,´j “ T̂n,j . The values of T̂n,j up to n “ 5 are summarized in Table 5.2.
This shows that each φ1,n can be written as the sum of factorizable functions, to which
the unperturbed Perron–Frobenius operator is applied:

φ1,npq, pq “
nÿ

j“´n

M0

`
ajkpqq fn,jpk, pq

˘
, (5.6.62)

where the q-dependent factor ajk of each summand is periodic with a multiple of the
initial perturbation frequency, and the p-dependent factor is a combination of the nth
and the pn´ 1qth derivative of the energy distribution

fn,jpk, pq “ Ŝn,jpkq Bn
Bpnψppq ` T̂n,jpkq Bn´1

Bpn´1
ψppq. (5.6.63)
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Table 5.1: Values of Ŝn,j for n P r1, . . . , 5s.
Ŝn,j j “ 0 j “ 1 j “ 2 j “ 3 j “ 4 j “ 5

n “ 1 0 W 0 0 0 0

n “ 2 W W 0 W 2

2
0 0 0

n “ 3 0 3W 2 W
4

0 W 3

4
0 0

n “ 4 3W 2 W
2

4
0 W 3 W

2
0 W 4

8
0

n “ 5 0 5W 3 W
2

8
0 5W 4 W

16
0 W 5

16

Table 5.2: Values of T̂n,j for n P r1, . . . , 5s.
T̂n,j j “ 0 j “ 1 j “ 2 j “ 3 j “ 4 j “ 5

n “ 1 0 1 0 0 0 0

n “ 2 W `W 0 W 0 0 0

n “ 3 0 6W W`3W 2

4
0 3W 2

4
0 0

n “ 4 3W W
2

`3W 2 W
2

0 3W 2 W`W 3

2
0 W 3

2
0

n “ 5 0 15W 2 W
2

`10W 3 W
8

0 20W 3 W`5W 4

16
0 5W 4

16

5.6.2 Charge Densities

Having derived expressions for the propagated perturbation densities, in the following
it is shown how the corresponding charge densities can be determined. Generally, the
charge density ρrΨs is defined as the integral of phase-space density Ψpq, pq over the
conjugate momentum

ρrΨspqq ”
ż

R

Ψpq, pqdp. (5.6.64)

As this projection operation is linear, it can be seen that the charge density of the
Fréchet–Taylor expansion (5.2.8) of a perturbed phase-space density is given by the
sum of the propagated perturbation densities plus that of the propagated unperturbed
density

ρrMrΨ0 ` ǫφ0spΨ0 ` ǫφ0qs “ ρrM0Ψ0s `
Nÿ

n“1

1

n!
ǫnρrφ1,ns ` ǫNo

`
}φ0}N

˘
. (5.6.65)

In Section 5.6.1, we have seen that all propagated perturbation densities φ1,n can be
written as a sum of factorizable functions, to which the undisturbed Perron–Frobenius
operator is applied, so that it is

ρrφ1,ns “
nÿ

j“´n

ρrM0

`
ajkpqq fn,jpk, pq

˘
s. (5.6.66)

The unperturbed Perron–Frobenius operator M0 can be expressed as the composition
of a linear drift-, symplectic scaling-, and a linear kick-operator, according to Equa-
tion (5.6.2).

Under general kicks – and therefore also for the linear linear kicks considered here–
the charge density is invariant: for any h P R and any Ψ P W it is

ρrKhΨs “
ż

R

Ψpq, p´ hqqdp “
ż

R

Ψpq, pqdp “ ρrΨs. (5.6.67)
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Scaling the phase-space density also scales the charge density in a measure-preserving
way:

ρrSCΨspqq “
ż

R

Ψpq C, p{Cqdp “ C

ż

R

Ψpq C, pqdp “ C ρrΨspq Cq. (5.6.68)

Only drift maps influence the charge density in a more intricate way. For an arbitrary
phase-space density, the expression

ρrDβΨs “
ż

R

Ψpq ´ βp, pqdp, (5.6.69)

does not admit any immediately useful simplifications. However, for a factorizable den-
sity of the form χpq, pq “ akpqqfppq, it is

ρrDβχs “
ż

R

akpq ´ βpq fppqdp “ akpqq
ż

R

e´ikβp fppqdp “ akpqqf̃pkβq. (5.6.70)

As expected, the charge density retains the spatial frequency k of the phase-space density.
The amplitude of the charge density depends on the drift factor β and the frequency k
via the Fourier transform of the function f .

With this, we see that

ρrM0χspqq “ ρrKCh SC DCβχspqq “ ρrSC DCβχspqq (5.6.71)

“ CρrDCβχspq Cq (5.6.72)

“ Cakpq Cqf̃pkCβq. (5.6.73)

From Equation (5.6.63), it can be seen that the Fourier transform of fn,jpk, pq with
respect to p is given by

f̃n,jpk, ωq “
”
piωqnŜn,jpkq ` piωqn´1T̂n,jpkq

ı
ψ̃pωq. (5.6.74)

Using this, the summands in Equation (5.6.66) can be written as

ρrM0

`
ajkpqq fn,jpk, pq

˘
s “ C ajkpq Cq f̃n,jpk, jkCβq (5.6.75)

“ ajkCpqqC
”
pijkCβqnŜn,jpkq ` pijkCβqn´1T̂n,jpkq

ı
ψ̃pjkCβq. (5.6.76)

Therefore, Equation (5.6.66) yields an explicit expression for the charge density of the
nth order propagated phase-space density in form of an Fourier series:

ρrφ1,nspqq “ C

nÿ

j“´n

1

2
eijkCq

”
pijkCβqnŜn,jpkq ` pijkCβqn´1T̂n,jpkq

ı
ψ̃pjkCβq (5.6.77)

“ C

nÿ

j“´n

1

2
eijkCqAn,jpk,Cβq, (5.6.78)

with the Fourier coefficients

An,jpk,Cβq ”
”
pijkCβqnŜn,jpkq ` pijkCβqn´1T̂n,jpkq

ı
ψ̃pjkCβq. (5.6.79)

We see that all Fourier coefficients are scaled by the value of the Fourier transform ψ̃ of
the energy distribution, evaluated at jkCβ, independent on the order n. With this, the
Fourier coefficients of the charge density – which in certain contexts are also referred to
as the bunching coefficients – can be constructed up arbitrary order.
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5.6.3 Two-Color Perturbation

In the following, the case is considered where the initial perturbation is not given by
a single monochromatic modulation but by two modulations with two individual wave-
lengths. In the monochromatic case, the phase of the modulation was of no concern,
as the unperturbed density is independent on the q-coordinate. When two modulations
are considered, their phases need to be accounted for explicitly. To this end, the defini-
tion (5.6.11) of a monochromatic perturbation ϕki is amended to include a phase factor
ci P C, |ci| “ 1

ϕkipq, pq ” rciakipqq ` ciakipqqsΨ0ppq. (5.6.80)

A two-color perturbation function can then be defined as

ϕk1,k2pq, pq ” ϕk1pq, pq ` ϕk2pq, pq
2

. (5.6.81)

5.6.3.1 First Order

Using the fact that the first-order propagated density function φ1,1r¨s depends linearly
on the perturbation, we immediately see that

φ1,1rϕk1,k2s “ φ1,1rϕk1 s ` φ1,1rϕk2s
2

. (5.6.82)

This shows that to first order, the two modulations to not interact with each other: the
total propagated perturbation density is just the sum of two monochromatic perturba-
tions, propagated individually.

5.6.3.2 Second Order

Inserting the two-color perturbation into the expression (5.6.34) for the second-order
propagated perturbation φ1,2r¨s yields

φ1,2rϕk1,k2s “ M0 :Hrϕk1,k2s : p:Hrϕk1,k2s : ψ ` 2ϕk1,k2q (5.6.83)

“ 1

4
M0 p:Hrϕk1s : ` :Hrϕk2 s :q p:Hrϕk1 s : ψ` :Hrϕk2 s : ψ ` 2ϕk1 ` 2ϕk2q (5.6.84)

“ 1

4
M0

´
:Hrϕk1s :2 ψ ` 2 :Hrϕk1s : ϕk1` :Hrϕk2 s :2 ψ ` 2 :Hrϕk2 s : ϕk2 (5.6.85)

` :Hrϕk1 s ::Hrϕk2 s : ψ ` 2 :Hrϕk1 s : ϕk2` :Hrϕk2 s ::Hrϕk1 s : ψ ` 2 :Hrϕk2 s : ϕk1

¯
,

where we set Ψ0 “ ψ as before. We see that this expression for φ1,2rϕk1,k2s contains those
terms that correspond to the second-order densities of the two perturbations propagated
individually:

M0

`
:Hrϕki s :2 ψ ` 2 :Hrϕki s : ϕki

˘
” φ1,2rϕkis. (5.6.86)

To capture the remaining terms, we define

φIIrϕki , ϕkj s ” M0

`
:Hrϕki s ::Hrϕkj s : ψ ` 2 :Hrϕkis : ϕkj

˘
. (5.6.87)

With this, the total second-order propagated density can be expressed concisely as

φ1,2rϕk1,k2s “ 1

4

`
φ1,2rϕk1s ` φ1,2rϕk2s ` φIIrϕk1 , ϕk2s ` φIIrϕk2 , ϕk1s

˘
. (5.6.88)

In this form, the terms corresponding to the solitary evolution of the two perturbations,
φ1,2rϕk1 s and φ1,2rϕk2s, are isolated from the from those that contain the interaction

100



between the two, namely φIIrϕk2 , ϕk1 s and φIIrϕk2 , ϕk1 s. The φ1,2rϕkis terms have already
been studied in Section 5.6.1.3. In the following, attention is paid only to the interaction
terms φII.

In Equation (5.6.87), the first term contains two Lie operators acting on Ψ0 and
therefore describes the combined effect of the two perturbations on the evolution of the
unperturbed density. It can be evaluated to

:Hrϕkis ::Hrϕkj s : Ψ0 “ 1

2

”
cicjW pkiqW pkjqaki`kj pqq

`cicjW pkiqW pkjqaki´kj pqq
ı B2

Bp2ψppq ` c.c. . (5.6.89)

The second term describes the influence of one modulation on the evolution of the other:

:Hrϕkis : ϕkj “ ciW pkiqakipqq
“
cjakj pqq ` cjakj pqq

‰ B
Bpψppq ` c.c. (5.6.90)

“ 1

2

“
cicjW pkiqaki`kjpqq ` cicjW pkiqaki´kjpqq

‰ B
Bpψppq ` c.c. . (5.6.91)

By reordering the sum of both terms with respect to subterms of equal periodicity,
aki`kj pqq and aki´kj pqq, Equation (5.6.87) can be written as

φIIrϕki , ϕkj s “ 1

2
M0

ˆ
cicjW pkiq

„
W pkjqB2ψ

Bp2 ` 2
Bψ
Bp


aki`kjpqq (5.6.92)

`cicjW pkiq
„
W pkjqB2ψ

Bp2 ` 2
Bψ
Bp


aki´kjpqq

˙
` c.c. . (5.6.93)

For the the sum of the two interaction terms in Equation (5.6.88), we finally get

ΦIIrϕki , ϕkj s ” φIIrϕki , ϕkj s ` φIIrϕkj , ϕkis “ (5.6.94)

M0

ˆ
cicj

„
W pkiqW pkjqB2ψ

Bp2 ` tW pkiq `W pkjqu Bψ
Bp


aki`kjpqq (5.6.95)

`cicj
„
W pkiqW pkjqB2ψ

Bp2 `
!
W pkiq `W pkjq

) Bψ
Bp


aki´kjpqq

˙
` c.c. . (5.6.96)

Using Equation (5.6.71), the charge density of ΦII can be calculated. This yields

ρ
“
ΦIIrϕki , ϕkj s

‰
pqq “cicjCAIIpki,`kj , Cβqaki`kj pCqq (5.6.97)

`cicjCAIIpki,´kj , Cβqaki´kj pCqq ` c.c. . (5.6.98)

where we define

AIIpki, kj , Cβq ” (5.6.99)
“
pirki ` kjsCβq2W pkiqW pkjq ` irki ` kjsCβ tW pkiq `W pkjqu

‰
ψ̃prki ` kjsCβq.

Note that AIIpki,´kj , Cβq indeed produces the correct expression, because it isW p´kjq “
W pkjq. These results show that the non-linear terms allow initial modulation waves to
interact with each other. Due to the interaction, modulation waves are generated with
different frequencies are generated. This concept of wave mixing is extensively studied
in the context of plasma physics [82,83]. A similar result – more specific to LSC driven
microbunching – for the second-order charge density is presented in [84] using a different
approach.
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5.7 Multiple Microbunching Steps

In Section 5.6, a single microbunching step was analyzed, which consists of a single
collective kick, followed by a shearing and compression of the bunch. In the following, it
is investigated how multiple consecutive microbunching steps affect the microbunching
instability. Generally, the challenge here lies in the fact that – as we have seen – the
first microbunching step changes the charge density of the bunch, which causes higher-
harmonics of an initial modulation to appear. These harmonics then contribute to the
collective kick that is part of the second mircobunching step. Due to this complication,
already after the second step, a closed-form exact solution for the phase-space densities
and charge densities can generally not be obtained. We will therefore make use of our
perturbative approach to derive an expansion of the densities beyond the first step.

Here, the total perturbed phase-space density of the sth step is denoted by Ψ̂s. In
the following, we will consider the expansion of Ψ̂s with respect to the perturbation
parameter:

Ψ̂s “
Nÿ

n“0

1

n!
ǫnφs,n ` o

`
ǫN

˘
. (5.7.1)

Note that here the 0th order term φs,0 is included in the expansion. Before, when only a
single microbunching step was considered, this term was taken out of the expansion sum
and given it the symbol Ψ1 ” φ1,0 to highlight the fact that it represents the unperturbed
phase-space density. In the following, both notations are used interchangeably and we
define Ψs ” φs,0. Further, it is convenient to also assign a symbol to the perturbation
part

Φs ”
Nÿ

n“1

1

n!
ǫnφs,n ` o

`
ǫN

˘
, (5.7.2)

which allows to express the total phase-space density as the sum of the unperturbed and
the part contributed by the perturbation

Ψ̂s “ Ψs ` Φs. (5.7.3)

The total Perron–Frobenius operator of the sth step, Msr¨s, includes both, the single-
particle and the collective part. The total density after the sth step is then given by

Ψ̂s “ MsrΨ̂s´1sΨ̂s´1. (5.7.4)

The expression MsrΨ̂s´1s can be expanded using Equation (5.2.8), which yields

MsrΨ̂s´1s “ MsrΨs´1 ` Φs´1s “
Mÿ

m“0

1

m!
DmMsrΨs´1sΦm

s´1 ` o
`
}Φs´1}M

˘
. (5.7.5)

In this expression, the perturbation density after the ps ´ 1qst step Φs´1 is substituted
by its expansion with respect to the perturbation parameter ǫ. It is important to keep
in mind that the term Φm

s´1 in Equation (5.7.5) denotes the m arguments of the m-
multi-linear bounded function DmMsrΨs´1s. It can be seen that for any m-multi-linear
bounded mapping f : V m Ñ W , where V,W are normed vector spaces, it is

f
´
x` o

`
}y}N

˘¯m

“ f xm ` o
`
}y}N

˘
. (5.7.6)

Therefore, we can write

MsrΨ̂s´1s “
Mÿ

m“0

1

m!
Dm

MsrΨs´1s
˜

Nÿ

n“1

1

n!
ǫnφs´1,n

¸m

`o
`
ǫN

˘
`o

`
}Φs´1}M

˘
. (5.7.7)
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Recognizing that o
`
}Φs´1}M

˘
“ o

`
ǫM

˘
, the sum of the two remainder terms can be

written as
o
`
ǫN

˘
` o

`
}Φs´1}M

˘
“ o

´
ǫminpN,Mq

¯
. (5.7.8)

By replacing the occurrence of Ψ̂s´1 on which the Perron–Frobenius operator acts, we
get

Ψ̂s “ MsrΨ̂s´1sΨ̂s´1 “ MsrΨ̂s´1s
˜

Nÿ

l“0

1

l!
ǫlφs´1,l ` o

`
ǫN

˘
¸
. (5.7.9)

Plugging in the expanded form of MsrΨ̂s´1s, this then yields

Ψ̂s “
Mÿ

m“0

1

m!
Dm

MsrΨs´1s
˜

Nÿ

n“1

1

n!
ǫnφs´1,n

¸m Nÿ

l“0

1

l!
ǫlφs´1,l ` o

´
ǫminpN,Mq

¯
. (5.7.10)

In order to arrive at an expansion of Φs, this expression now has to be reordered with
respect to equal orders of ǫ. To this end, the sums over n and m is rewritten using a
multi-index notation. Using a multi-index N

m
1 Q α “ pα1, . . . , αmq, the notation

φs,α ” φs,α1
. . . φs,αm (5.7.11)

can be used to construct the arguments of the multi-linear Fréchet derivative. The
symbol N0 refers to the set of natural numbers including 0, and N1 for the same set
without 0. With this multi-index notation, the expression for the evaluated mth Fréchet
derivative can be written as a sum over terms with equal power of ǫ:

Dm
MsrΨs´1s

˜
Nÿ

n“1

1

n!
ǫnφs´1,n

¸m

“
Nÿ

n“0

ǫn
ÿ

αPNm
1

|α|“n

1

α!
Dm

MsrΨs´1sφs´1,α, (5.7.12)

where α! ” śm
i“1 αi! and |α| ” řm

i“1 αi. Substituting this in Equation (5.7.10) yields

Ψ̂s “
Nÿ

n“0

ǫn
Mÿ

m“0

ÿ

αPNm
1

|α|“n

1

α!
DmMsrΨs´1sφs´1,α

Nÿ

l“0

1

l!
ǫlφs´1,l (5.7.13)

“
Nÿ

n“0

Nÿ

l“0

ǫn`l
Mÿ

m“0

ÿ

αPNm
1

|α|“n

1

α! l!
DmMsrΨs´1sφs´1,α φs´1,l (5.7.14)

“
Nÿ

n“0

ǫn
Mÿ

m“0

ÿ

αPNm
1

ˆN0

|α|“n

1

α!
DmMsrΨs´1sφs´1,α, (5.7.15)

where in the last equation we have expanded the domain of the multi-index by N0 so that
also the term φs´1,l – on which the evaluated Fréchet derivative acts – can be included
in the multi-index notation. From this we see that the terms φs,n of the expansion of
Ψ̂s are given by

φs,n “
Mÿ

m“0

ÿ

αPNm
1

ˆN0

|α|“n

|α|!
α!

DmMsrφs´1,0sφs´1,α. (5.7.16)

In particular, this shows that terms of the phase-space density of order n after the sth
step are given by finite sums containing only combinations of terms of order ď n from
the previous step.
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For n “ 0, there is only a single multi-index that contributes to the sum in Equa-
tion (5.7.16), namely α “ p0q. Therefore, the 0th-order term reads

φs,0 “ Msrφs´1,0sφs´1,0, (5.7.17)

which shows that the unperturbed density after the s-step is given by the unperturbed
density at the previous step, propagated with the unperturbed PF operator.

There are two multi-indices that contribute to the first order term n “ 1 in Equa-
tion (5.7.16): α “ p1q and α “ p1, 0q. This gives

φs,1 “ Msrφs´1,0sφs´1,1 `DMsrφs´1,0sφs´1,1 φs´1,0. (5.7.18)

The two terms correspond to the first-order term propagated with the unperturbed PF
operator and the unperturbed density propagated with the first-order perturbed PF
operator, respectively.

For orders higher than n “ 1, the number of allowed multi-indices grows rapidly.
For instance, the third-order density is generated by the multi-indices p3, 0q, p2, 1, 0q,
p1, 2, 0q, p1, 1, 1, 0q, p2, 1q, p1, 1, 1q, p1, 2q, and p3q.

5.7.1 Two Steps

In the following, the first-order phase-space density after two microbunching steps is
derived, assuming a monochromatic modulation as the initial perturbation. The total
Perron–Frobenius operator of each step consists of a collective kick Kir¨s followed by a
non-collective, single-particle part Ni:

Mir¨s “ NiKir¨s. (5.7.19)

Again, we consider

Kir¨s “ expp:Hir¨s :q (5.7.20)

with a convolution-type Hamiltonian, as in Equation (5.5.11). As shown in Equa-
tion (5.6.2), the non-collective part of each step can be decomposed into a drift-, scale-,
and a kick-operator

Ni “ KCihi
SCi

DCiβi
, (5.7.21)

each with its own set of drift-, chirp- and compression-parameters.

As before, a density with no dependence on the q coordinate is chosen for the un-
perturbed initial phase-space density

Ψ0pq, pq “ φ0,0pq, pq “ ψppq, (5.7.22)

with
ş
R
ψppqdp “ ρ0. Equation (5.7.17) shows that the 0th order density after the second

step is given by

φ2,0 “ M2rφ1,0sφ1,0 “ M2 rM1rφ0,0sφ0,0s M1rφ0,0sφ0,0. (5.7.23)

We saw that φ0,0 does not produce collective kicks: K1rφ0,0s “ Id. Hence, it is

φ2,0 “ M2 rN1φ0,0s N1φ0,0. (5.7.24)

Also the unperturbed density after the first step

φ1,0 “ N1φ0,0 “ N1ψppq “ KC1h1
ψpp{Ciq (5.7.25)
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produces no collective kicks, as its charge density is still homogeneous

ρrKC1h1
ψpp{Ciqs “ ρrψpp{Ciqs “ Ciρ0 “ const. . (5.7.26)

Therefore, it is M2rφ1,0s “ N2 and

φ2,0 “ N2 N1 φ0,0. (5.7.27)

For the first-order density after the second step, Equation (5.7.18) yields

φ2,1 “ M2rφ1,0sφ1,1 `DM2rφ1,0sφ1,1 φ1,0 “ N2 pφ1,1` :H2rφ1,1s : φ1,0q . (5.7.28)

If the initial perturbation is a monochromatic density modulation ϕk, the first-order
perturbation density after the first step is given by

φ1,1rϕks “ φ1,1rakψs ` φ1,1rākψs “ N1

ˆ
akpqq

„
1 `W1pkq B

Bp


ψppq

˙
` c.c. , (5.7.29)

see Equation (5.6.33). Using Equation (5.6.71), the corresponding charge density can be
seen to be

ρ rφ1,1rϕkss “ C1 akpC1 qq F
"„

1 `W1pkq B
Bp


ψppq

*
pkC1β1q ` c.c. (5.7.30)

“ C1 aC1kpqq r1 ` i kW1pkqC1β1s ψ̃pkC1β1q ` c.c. (5.7.31)

“ ρ0C1 g1 aC1kpqq ` c.c. , (5.7.32)

where the symbol

g1 ” 1

ρ0
r1 ` i kW1pkqC1β1s ψ̃pkC1β1q (5.7.33)

was introduced. Analogous to the derivation in Section 5.6.1.1, using this expression for
the charge density, the Lie operator in Equation (5.7.28) can be seen to be

:H2rφ1,1rϕkss :“ C1 g1W2pC1 kq aC1kpqq B
Bp ` c.c. . (5.7.34)

For the differential operator B
Bp , it can be seen that the following commutation relations

hold for any phase-space density Ψpq, pq:

B
BpKhΨ “ B

Bp rΨpq, p´ hqqs “
„ B

BpΨ


pq, p´ hqq “ Kh
B

BpΨ (5.7.35)

B
BpSCΨ “ B

Bp rΨpCq, p{Cqs “ 1

C

„ B
BpΨ


pCq, p{Cq “ 1

C
SC

B
BpΨ (5.7.36)

B
BpDβΨ “ B

Bp rΨpq ´ βp, pqs “
„

´β B
Bq ` B

BpΨ


pq ´ βp, pq “ Dβ

„ B
Bp ´ β

B
Bq


Ψ.

(5.7.37)

With this, we determine

B
Bpφ1,0 “ B

BpN1φ0,0 “ B
BpKC1h1

SC1
DC1β1

ψppq (5.7.38)

“ 1

C1

KC1h1
SC1

DC1β1

B
Bpψppq “ 1

C1

N1

B
Bpψppq. (5.7.39)
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Therefore, the term :H2rφ1,1s : φ1,0 in Equation (5.7.28) is given by

:H2rφ1,1s : φ1,0 “ g1W2pC1 kq aC1kpqqN1

B
Bpψppq ` c.c. . (5.7.40)

Note that in this expression, the single-particle operator of the first stage N1 acts only
on the derivative of the energy distribution and in particular not on the aC1kpqq term.
For reasons that become apparent in a moment, this term is rewritten in a way so that
N1 acts on both, the p-dependent term as well as the q-dependent term. This can be
achieved by noticing that it is

aC1kpqqN1
B

Bpψppq “ N1

ˆ“
N

´1
1 aC1kpqq

‰ B
Bpψppq

˙
. (5.7.41)

Applying the inverse operator N´1
1 to aC1kpqq yields

N
´1
1 aC1kpqq “ D´C1β1

S1{C1
K´C1h1

aC1kpqq “ D´C1β1
S1{C1

aC1kpqq (5.7.42)

“ D´C1β1
akpqq “ akpqq exppik C1β1pq. (5.7.43)

Plugging everything back into Equation (5.7.28), we finally arrive at

φ2,1 “ N2N1

ˆ
akpqq

„
1 `

!
W1pkq ` g1W2pC1 kq exppik C1β1pq

) B
Bp


ψppq

˙
` c.c. .

(5.7.44)
Following the same approach as in Section 3.4.2, the two-stage Perron–Frobenius

operator can be expressed in terms of a single kick-, scale-, and drift-operator

N2Ð0 ” N2N1 “ KC2h2
SC2

DC2β2
KC1h1

SC1
DC1β1

(5.7.45)

“ KC˚
2
h˚
2

S
C

:
2

D
β

:
2

, (5.7.46)

where

h˚
2 “ h2 `C1h1 (5.7.47)

C˚
2 “ 1

1 ` h˚
2β2

(5.7.48)

C
:
2 “ C˚

2C1 (5.7.49)

β
:
2 “ C1β1 `C2

1C
˚
2 β2. (5.7.50)

Hence, N
´1
2Ð0φ2,1 is factorizable with respect to its dependence on q and p. The

charge density of φ2,1 can therefore be determined using Equation (5.6.71), which yields

ρrφ2,1s “ C
:
2 ak

´
C

:
2q
¯
f̃
´
k β

:
2

¯
, (5.7.51)

where f̃ is the Fourier transform of the p-dependent part of N´1
2Ð0φ2,1:

f̃pωq “ FωÐp

ˆ„
1 `

!
W1pkq ` g1W2pC1 kq exppik C1β1pq

) B
Bp


ψppq

˙
. (5.7.52)

Using the identities

FωÐp
B

Bpψppq “ iω ψ̃pωq (5.7.53)

and

FωÐp exppikpqXppq “
ż

R

δpk ´ ω1q X̃pω ´ ω1qdω1 “ X̃pω ´ kq (5.7.54)
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gives

f̃pωq “ r1 ` iωW1pkqs ψ̃pωq ` ipω ´ k C1β1q g1W2pC1 kq ψ̃pω ´ k C1β1q. (5.7.55)

Noticing that β:
2 ´ C1β1 “ C2

1C
˚
2β2 “ C

:
2C1β2 we then arrive at the final expression for

the first-order charge density after the second step

ρrφ2,1s “ C
:
2 ak

´
C

:
2q
¯
g

:
2 ` c.c. , (5.7.56)

where the symbol g:
2 is defined as

g
:
2 ”

“
1 ` ik β

:
2W1pkq

‰
ψ̃pk β:

2q ` i g1 C
:
2C1β2k W2pC1 kq ψ̃pC:

2C1β2kq. (5.7.57)

In Section 5.8.5, a two-step microbunching gain function is derived from this expression
for g:

2, which is plotted in Figure 6.12.

5.8 Application to LSC-driven Microbunching

Until now, the results obtained from the perturbation theory are of strictly mathemat-
ical nature and only little context for the underlying physical process was given. It is
therefore expedient to further investigate the resulting expressions, and determine the
implications for the microbunching instability. While the perturbation theory was for-
mulated for an arbitrary impedance function, in the following the focus is on the effect
of longitudinal space charge.

In the perturbation theory, no assumptions about the energy distribution ψ were
made. In the following, the case is considered where the initial energy distribution is a
Gaussian distribution with zero mean and variance σ2p:

ψppq “ ρ0
ξpp{σpq
σp

, where ξpxq ” 1?
2π
e´ 1

2
x2

. (5.8.1)

The parameter σp is referred to as the energy spread. Derivatives of the energy distri-
bution can then be expressed via the probabilist’s Hermite polynomials

dnψ

dpn
ppq “ p´1qnHenpp{σpqψppq

σnp
, (5.8.2)

where

Henpxq ” p´1qnξpxq´1 d
nξ

dxn
pxq. (5.8.3)

The Fourier transform of ψ is given by

ψ̃pωq ”
ż

R

ψppqe´iωpdp “ ρ0

σp

ż

R

ξpp{σpqe´iωpdp “ ρ0

ż

R

ξpxqe´iσpωxdx “ ρ0ξ̃pσpωq.
(5.8.4)

Using the well-known identity

ξ̃pxq “
?
2πξpxq (5.8.5)

shows that

ψ̃pωq “
?
2πρ0ξpσpωq. (5.8.6)

Until now, also the impedance function W pkq was considered an arbitrary func-
tion and not further specified. As we work in a one-dimensional, longitudinal model,
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Figure 5.1: Plot of the longitudinal impedance function of a bunch with radially uniform
charge distribution.

assumptions about the transverse shape of the bunch have to be made to derive this lon-
gitudinal impedance function. For certain physically relevant models of the transverse
bunch shape, an impedance function can be determined analytically, see [70, 71]. One
frequently considered model is that of a cylindrical bunch with a transverse charge distri-
bution that is radially uniform. In that case, the impedance function of a non-relativistic
beam is given by

W pkq “ i
lρ0Nbe

2

ε0

1 ´ |rk|K1p|rk|q
π r2 k

“ i eU0 Y prkq, (5.8.7)

where l P R
` is the path length of the section, r P R

` is the radius of the transverse
distribution. The quantity U0 is defined as

U0 ” lρ0Nbe

rε0
“ l

r
I0 Z0, (5.8.8)

where I0 “ cρ0Nbe is the beam current, with Nb being the number of electrons in the
bunch, Z0 ” 1

ε0c
« 376.73Ohm is the free-space impedance. Further, the auxiliary

function Y is defined as

Y pxq ” 1 ´ |x|K1p|x|q
π x

, (5.8.9)

which is plotted in Figure 5.1. When relativistic effects are to be taken into account,
the argument of the impedance function has to be scaled by the Lorentz factor γ:

W pkq Ñ 1

γ
W

ˆ
k

γ

˙
. (5.8.10)

With the energy distribution and impedance function fixed, we can now have a closer
look at the results for the propagated perturbation densities.
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5.8.1 First-Order Propagated Density

The first-order propagated perturbation density of resulting from a monochromatic ini-
tial perturbation is given by Equation (5.6.33) and reads, after plugging in ψ and Z,

φ1,1rϕks “ ρ0

σp
M0

"
akpqq

„
1 ´ i

eU0

γσp
Y

ˆ
rk

γ

˙
He1

ˆ
p

σp

˙
ξ

ˆ
p

σp

˙*
` c.c. . (5.8.11)

As shown in Equation (5.6.2), the single-particle Perron–Frobenius operator is given by
M0 “ KCh SC DCβ. To investigate the microbunching effect, the chirp imprinted on the
phase-space density by the KCh operator is, in this context, irrelevant. We therefore
define the dechirped phase-space density

φ̀1,1 “ K´Ch φ1,1, (5.8.12)

where this correlation is removed. As already shown in Equation (5.6.67), the charge-
density is equal for both, the chirped and the unchirped phase-space density:

ρrφ̀1,1s “ ρrφ1,1s. (5.8.13)

Applying the drift and scaling parts of M0, φ̀1,1 can be written explicitly as

φ̀1,1rϕks “ ρ0

σp
eiCkqeikβp

„
1 ´ iAHe1

ˆ
p

Cσp

˙
ξ

ˆ
p

Cσp

˙
` c.c. , (5.8.14)

where the relative modulation amplitude

A ” eU0

γσp
Y

ˆ
rk

γ

˙
(5.8.15)

was introduced. This dimensionless parameter describes the amplitude of the energy
modulation that a bunch with unity density modulation would experience – normalized
to the energy spread of the bunch. We therefore refer to it as the amplitude parameter.
Further, the dimensionless parameter

B ” kCβσp (5.8.16)

is defined, which describes the dispersive shift of the longitudinal coordinate a particle
with an energy deviation equal to the energy spread of the bunch would experience –
normalized with respect to the wavenumber of the modulation. It is a measure for the
amount of shearing the magnetic chicane induces on the phase-space density. Hence, it
shall be called the shearing parameter. Note that both, the shearing and the amplitude
parameter, depend on the wavenumber k of the modulation. With this, the phase-space
density can be written most concisely as

φ̀1,1rϕks “ ρ0

σp
eiCkqe

iB
p

Cσp

„
1 ´ iAHe1

ˆ
p

Cσp

˙
ξ

ˆ
p

Cσp

˙
` c.c. . (5.8.17)

This representation of the phase-space density is particularly handy, as it depends only on
4 dimensionless quantities: the longitudinal coordinate Ckq, compressed and normalized
with the wavenumber of the modulation; the energy coordinate p

Cσp
, normalized to the

compressed energy spread; the amplitude parameter A; and the shearing parameter B.
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An expression for the charge-density is obtained from Equation (5.6.78):

ρrφ1,1s “ C

2
A1,0pk,Cβq `C

„
1

2
eikCqA1,1pk,Cβq ` c.c.


(5.8.18)

“ C

2
eikCqA1,1pk,Cβq ` c.c. “ C

2
eikCqrikCβŜ1,1 ` T̂1,1sψ̃pkCβq ` c.c. (5.8.19)

“ C

2
eikCqrikCβW pkq ` 1sψ̃pkCβq ` c.c. (5.8.20)

“
c
π

2
Cρ0e

ikCqr1 ´ kCβ eU0Y prkqsξpkCβσpq ` c.c. , (5.8.21)

where the coefficients An,j from Equation (5.6.78) are not to be confused with the di-
mensionless quantity A defined in Equation (5.8.15). By substituting A and B, this can
finally be written as

ρrφ1,1s “ 1

2
Cρ0e

ikCqr1 ´ABse´ 1

2
B2 ` c.c. (5.8.22)

“ Cρ0 cospkCqqr1 ´ABse´ 1

2
B2

. (5.8.23)

5.8.1.1 Normalized First-Order Gain Function

Equation (5.8.23) shows that the amplitude of the propagated charge-density modulation
depends on the parameters A and B via the function

G1pA,Bq ” p1 ´ABqe´ 1

2
B2

, (5.8.24)

which we will call the first-order normalized gain function. It describes the amplification
– or suppression – of the microbunching amplitude in dependence on the perturbation
wavelength. We call it the normalized gain function to distinguish it from the more
conventional notion of a gain function G1pkq which describes the dependence of the
gain on the wavenumber k. Figure 5.2 show plots of G1pA,Bq for different values of A.
The conventional gain function can be constructed from the normalized gain function
by explicitly resolving the dependence of the normalized parameters on k, which is
investigated in more detail in later sections.

In the following, we investigate some features of the normalized gain function and see
how they can be understood in context with the underlying phase-space dynamics. For
this discussion, it is with out loss of generality assumed that A is positive. To facilitate
better understanding, Figures 5.5 and 5.6 show plots of φ̀1,1rϕks together with the charge
density ρrφ1,1rϕkss for two values of A and multiple values of B.

The center-left subplots in both Figures show the B “ 0 case, which means that
no shearing of the phase-space has occurred. For both, A “ 1 and A “ 3, φ1,1 can be
visualized as a periodic sequence of connected regions, alternating between positive and
negative values. In the A “ 1 case, the shape of these regions is close to elliptical, with
some positive chirp. Whereas for A “ 3, the regions are hour-glass shaped, with two
pronounced extrema connected by a “waist” of lower absolute density. Also in this case,
the regions show positive chirp.

We note that the normalized gain function has a zero crossing at AB “ 1, which
implies that the microbunching completely vanishes at first order for this combination
of parameters. This situation is shown in the center-right subplots of Figures 5.5 and
5.6. Due to the shearing, regions of positive and negative density start to overlap more.
Figuratively speaking, for B ą 0, the upper part of a positive region moves in the
direction of the lower part of the adjacent negative region, and vice versa. If AB “ 1,
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Figure 5.2: Plot of G1pA,Bq as a function of B for various values of A.

the positive and negative regions overlap precisely so that their contributions to the
charge density cancel out exactly at all longitudinal positions.

For A ‰ 0, the normalized gain function features two extrema. For a given value of
A, the extrema are located at

B˘pAq “ 1 ˘
?
4A2 ` 1

2A
. (5.8.25)

It can be seen that one of the extrema occurs at a positive value of the shearing param-
eter, while the other occurs at negative shearing. In Figure 5.3, a plot of the value of
the two extrema is shown.

The extremum at B´ is always a maximum. In Figures 5.5 and 5.6, this case is
depicted in the top-right subplots. Here, the negative shearing causes the initially posi-
tively chirped regions to stand upright in phase-space. Regions of positive and negative
density overlap only marginally. This results in the maximum amplification of the mi-
crobunching amplitude, as only regions of the same sign contribute to the charge density
at each longitudinal position and virtually no cancellation occurs. For B ă B´, the re-
gions start to overlap again, and the gain decreases. We note that the absolute value of
G1pA,B´q is always larger than unity. This implies that at B “ B´, the microbunching
is always amplified, independent on the value of A.

At B`, the extremum is a minimum, indicating a π phase-shift of the microbunching.
It can be seen that the absolute value of G1pA,B`pAqq is smaller than unity, if A ă 2.54.
This indicates that if the normalized energy modulation amplitude is smaller than 2.54,
then the microbunching instability is always suppressed for all positive values of the
shearing parameter. If A is larger than this threshold, amplification of the microbunching
amplitude occurs. Figures 5.5 and 5.6 help to understand this effect qualitatively: If
A is small enough, then the shape of the density regions resembles ellipses. Shearing
these ellipses by any positive value causes positive and negative regions to overlap, which
results in a reduction of the charge density modulation amplitude. In case A is large,
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the regions resemble hour-glasses more than ellipses: the difference between the value
of the phase-space density at the extrema and the value at the waist is large. This
geometry allows for an amplifying effect to occur. At a certain value of the shearing
parameter, the upper and lower extrema of two neighboring regions of the same sign
fully overlap. In particular, this full overlap of the maxima occurs at the position of the
waist of the interjacent region of opposite sign. This clearly results in an amplification
of the microbunching amplitude, as in the projection the two extrema sum up and the
waist of the opposite sign contributes only marginally. This situation is shown in the
lower-left subplot of Figure 5.6. If B is larger than this critical value, the regions start to
overlap more uniformly, and the microbunching amplitude decreases. Figure 5.4 shows
a contour plot of the normalized gain function.

5.8.1.2 Wavelength-Dependent First-Order Gain Function

The normalized gain function G1pA,Bq describes how the geometry of the phase-space
dynamics influences the charge-density inhomogeneities, depending on the normalized
modulation amplitude A and the shearing parameter B. This description provides valu-
able, abstract insights into the fundamental microbunching process. In practice, however,
one is often times particularly interested in how strong the microbunching instability is
amplified – or suppressed – at a certain wavelength λ “ 2π

k
. As hinted at before, the

dependence of the microbunching gain on the wavenumber k can be obtained from the
normalized gain function by explicitly resolving the dependence of the normalized pa-
rameters on k. This then defines the wavenumber-dependent gain function

G1pkq ” G1

`
Apkq, Bpkq

˘
. (5.8.26)

The normalized shearing parameter, as defined in Equation (5.8.16), depends linearly
on the wavenumber Bpkq “ B1k, where we introduce

B1 ” Cβσp “ CM56σp

cP0

, (5.8.27)
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using the definition of β given in Equation (3.4.3). In practice, typical values of B1

lie in the range 0µm to 100 µm. For instance, the parameter combination C “ 4,
M56 “ 140mm, σp “ 5 keV and cP0 “ 146MeV yields B1 « 19.2µm.

In Equation (5.8.15), the normalized amplitude parameter is defined. By defining

A1 ” eU0

γσp
“ l

r

eI0Z0

γσp
and r1 ” r

γ
(5.8.28)

the amplitude parameter can be written as

Apkq “ A1 Y pr1kq. (5.8.29)

For the parameter combination l “ 25m, r “ 500µm, I0 “ 31A, cP0 “ 146MeVp ùñ
γ « 285.7) and σp “ 5 keV, it is A1 « 408.8 and r1 « 1.75µm.

Figures 5.7 and 5.9 show plots of the curve pBpkq, Apkqq for parameters similar to the
example above and multiple values of B1 and r1, respectively, on top of the contour lines
of G1pA,Bq. In Figures 5.8 and 5.10, plots of |G1pkq| are shown, which correspond to the
value of |G1pA,Bq| along the curves in Figures 5.7 and 5.9, respectively. These Figures
can help to get a more intuitive understanding of the effect the parameters A1,r1, and
B1 have on the wavelength-dependent gain curve, by investigating how the parameters
affect the location of a given wavelength in the A,B space:

The parameter A1 scales the pBpkq, Apkqq curve in the A direction. Increasing A1

will therefore increase the maximum gain value and push the location of the maximum
towards longer wavelengths.

The parameter B1 stretches or shrinks the curve in the B direction. Increasing B1

will push a given wavelength towards larger values of B, causing a reduction of the
maximum attainable gain. This effect is illustrated by the three curves in Figure 5.7,
which correspond to different values of B1.

Variation of the r1 parameter will not affect the B-coordinate of a given wavelength,
but will change its position along the A axis only, corresponding to a stretching or
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Figure 5.5: Plots of φ̀1,1 and ρ1,1 for A “ 1 and multiple values of B.
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Figure 5.6: Plots of φ̀1,1 and ρ1,1 for A “ 3 and multiple values of B.
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shrinking of the Apkq function, as shown in Figure 5.9. This will only slightly affect the
location of the maximum. The value of the maximum, however, increases as r1 decreases
and vice versa.

5.8.2 Second-Order Propagated Density

After analyzing the first-order perturbation density and the resulting gain function, now
the second-order perturbation density is considered, which is given in Equation (5.6.42).
Plugging in the derivatives (5.8.2) of the energy distribution yields

φ1,2rϕks “ ρ0

σp
M0

#
a2kpqq

„
W pkq2
2σ2p

He2

ˆ
p

σp

˙
´ W pkq

σp
He1

ˆ
p

σp

˙

`1

2

«
|W pkq|2
2σ2p

He2

ˆ
p

σp

˙
´ W pkq

σp
He1

ˆ
p

σp

˙ff+
ξ

ˆ
p

σp

˙
` c.c. .

(5.8.30)
As before, the single-particle Perron–Frobenius operator is applied explicitly. Using the
parameters A, and B, as defined before, this can be written as

φ̀1,2rϕks “ ρ0

σp

#
ei2Ckqe

i2B p
Cσp

„
´1

2
A2 He2

ˆ
p

Cσp

˙
´ iAHe1

ˆ
p

Cσp

˙
(5.8.31)

`1

2

„
1

2
|A|2 He2

ˆ
p

Cσp

˙
´ iAHe1

ˆ
p

Cσp

˙+
ξ

ˆ
p

Cσp

˙
` c.c. ,

(5.8.32)

where φ̀1,2 ” K´Ch φ1,2 denotes the unchirped variant of φ1,2.

5.8.2.1 Second-Order Gain Function

For the charge density, Equation (5.6.78) yields

ρrφ1,2spqq “ C

2

!
A2,0pk,Cβq `

”
eikCqA2,1pk,Cβq ` ei2kCqA2,2pk,Cβq ` c.c.

ı)
.

(5.8.33)

With A2,0 “ A2,1 “ 0, and

A2,2 “
“
´2pkCβZq2 ` 2ikCβZ

‰
ψ̃p2kCβq (5.8.34)

“
?
2πρ0

“
2pABq2 ´ 2AB

‰
ξp2Bq (5.8.35)

“ 2ρ0
“
pABq2 ´AB

‰
e´2B2

, (5.8.36)

the charge density can be written as

ρrφ1,2spqq “ 2Cρ0 cosp2kCqqG2pA,Bq, (5.8.37)

where the second-order normalized gain function G2 is defined as

G2pA,Bq ” AB rAB ´ 1s e´2B2

. (5.8.38)

It is sensible to not include the factor 2 “ 2! in the definition of the gain function,
as the contribution of the second-order charge density to the total charge density is
ǫ2

2!
ρrφ1,2s. This way, G2 reflects the effective contribution of the second-order charge
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Figure 5.7: Plot of the curves (B(k),A(k)) with the parameters A1 “ 400, r1 “ 1.75µm,
and B1 “ 10µm (blue), B1 “ 20µm (red), B1 “ 40µm (green), on top of a contour plot
of G1pA,Bq.
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Figure 5.8: Plot of |G1pkq| for the same parameters as in Figure 5.7.
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Figure 5.13: Location of the local extrema of G2pA,Bq as a function of A.

density, normalized to ǫ2. Figure 5.11 shows plots of G2pA,Bq for multiple values of A
with B as the independent variable. A contour plot of G2pA,Bq is shown in Figure 5.12.

We note that G2 has a root at AB “ 1 – just as G1. This indicates that at AB “ 1,
both the first-order and the second-order microbunching gain vanish. At this parameter
combination the microbunching instability is suppressed up to at least second order.

For a fixed value of A, the three local extrema of G2 occur at the roots of

4A2B3 ´ 4AB2 ´ 2A2 B `A. (5.8.39)

These roots shall be denoted with BI , BII , and BIII , where BI ă BII ă BIII . In
principle, closed-form solutions for the roots of (5.8.39) can be directly obtained as it is
a third-order polynomial. Their closed-form expressions, however, are rather complicated
and provide only little additional insight. We will therefore omit them here. Figure 5.13
shows a plot of the roots, which were obtained numerically.

Plots of φ̀1,2 and ρ1,2 are shown in Figures 5.14 and 5.15, which illustrate the origin
of the roots and maxima of the second-order gain function. The second-order phase-
space density consists of a periodic sequence of negative-valued “central” regions around
p

Cσp
“ 0, each accompanied by two adjacent positive “satellite” regions with around

p
Cσp

“ ˘2 that are slightly shifted towards larger and smaller values of q, respectively.
The amount of integrated absolute density contained in the two satellites is larger than
that in the single central. At B “ 0, the satellites overlap with the center in a way so that
the charge density vanishes, see center-left subplot. For B “ BI , which is shown in the
top-right subplots, the two satellites align, leaving the center isolated, which results in
the maximum charge density amplitude. If B “ BII , the satellites align with the central
region, see center-right subplots. As the total amount of integrated absolute density is
larger in the satellites than in the center, this constellation causes a local extremum,
albeit with a smaller amplitude compared to the other two extrema. The extremum
at B “ BIII , as shown in the bottom-right subplots, can again be explained by two
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satellites aligning between two central region. For small values of A, the amplitude of
this extremum is comparatively small, as in this case, the center and satellite regions
are less well localized, which results in more overlap. Between BII and BIII lies the
case where AB “ 1, see the bottom-left subplots. Here, the satellites are shifted from
their alignment with the central region so that their contributions to the charge density
cancel out exactly, resulting in the root of the gain function.

5.8.2.2 Wavelength-Dependent Second-Order Gain Function

Analogous to the first-order case, also the wavelength-dependent second-order gain func-
tion can be derived by substituting the dependence of the parameters A and B on the
wavenumber k in the normalized second-order gain function:

G2pkq ” G2

`
Apkq, Bpkq

˘
. (5.8.40)

Exemplary plots of G2 are shown in Figure 5.16.

5.8.3 Third-Order Gain Functions

Above, it was shown how Equations (5.6.58) and (5.6.78) yield explicit expressions for
the first- and second-order perturbation densities and gain functions. In principle, the
same approach can be used for any perturbation order. However, we restrict ourselves
and conclude our analytical investigations in this direction at the third order, for which
only the gain function is derived explicitly.

For the third-order coefficients, we get A3,0 “ A3,2 “ 0 and

A3,1 “ ´3

4

“
ipkCβq3Z2Z ` pkCβq2p2ZZ ` Z2q

‰
ψ̃pkCβq “ ρ0

3

4
pABq2pAB ´ 1qe´ 1

2
B2

(5.8.41)
and

A3,3 “ ´27

4

“
ipkCβq3Z3 ` pkCβq2Z2

‰
“ ´ρ0

27

4
pABq2pAB ´ 1qe´ 9

2
B2

. (5.8.42)

We see that the third-order charge density contains modulations on the first and third
harmonic:

ρrφ1,3spqq “ 3!
“
Cρ0 cospkCqqGI

3pA,Bq ` Cρ0 cosp3kCqqGIII
3 pA,Bq

‰
, (5.8.43)

where

GI
3pA,Bq ” 1

8
pABq2pAB ´ 1qe´ 1

2
B2

(5.8.44)

and

GIII
3 pA,Bq ” ´9

8
pABq2pAB ´ 1qe´ 9

2
B2

(5.8.45)

describe third-order contribution to the first- and third harmonic, respectively. As be-
fore, we see that both gain functions have a root at AB “ 1.

This shows that at AB “ 1 the microbunching gain vanishes completely, up to at
least the third perturbation order.
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Figure 5.14: Plots of φ̀1,2 and ρ1,2 for A “ 1 and multiple values of B.
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Figure 5.15: Plots of φ̀1,2 and ρ1,2 for A “ 3 and multiple values of B.
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Figure 5.16: Plot of |G2pkq| for the same parameters as in Figure 5.7.

5.8.4 Phase-Space Density Approximations

With expressions for the nth-order perturbation densities at hand, approximations of
the total density can be constructed. For a given perturbation parameter ε, we denote
the approximation of the total phase-space density up to nth-order with

Φ1,N ”
Nÿ

n“0

εn

n!
φ1,n (5.8.46)

and the corresponding approximate charge density with

P1,N ”
Nÿ

n“0

εn

n!
ρ1,n, (5.8.47)

where P here is to be taken as the Greek capital letter Rho. Figure 5.17 shows an
illustrative example of the convergence of Φ1,N and P1,N towards the exact solution.
For the chosen parameters, the fourth-order approximate phase-space density is visually
indistinguishable from the exact solution. Already the second-order approximation of
the charge density is close to the exact solution. We note that the rate of convergence
depends on the normalized parameters A and B, and the value chosen for the pertur-
bation parameter ε. In particular, when the product εA is much larger than unity, an
adequate approximation might only be achieved at a much larger order N .

5.8.5 First-Order Two-Step Gain Function

In Section 5.7.1 an expression for the charge density after two microbunching steps was
derived, see Equation (5.7.56). It can be seen that the wavenumber of the modulation
of this charge density is equal to the wavenumber of the initial perturbation multiplied
by the total compression factor C:

2 of the two steps. The complex amplitude g:
2, as

defined in Equation (5.7.57), involves two impedance functions: the impedance of the
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Figure 5.17: Plots of the approximate phase-space densities and charge-densities up to
a given order. The bottom-right subplot shows the exact solution of the phase-space
density and the charge density that was obtained from it numerically. In this example,
the normalized parameters are A “ 4, B “ 1 and the perturbation parameter is ε “ 0.2.
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first step, evaluated at the initial wavenumber W1pkq and the impedance of the second
step, evaluated at the initial wavenumber compressed by the first step W pC1kq. Now,
both of these occurrences are replaced by the LSC impedance

Wnpkq “ i
eUn Y pr1

nkq
γn

(5.8.48)

with n P t1, 2u, where the value of the Lorentz factor, effective beamsize and space-
charge amplitude might differ between the two steps. As before, a Gaussian energy
distribution is assumed so that it is Ψ̃pωq “

?
2π ρ0 ξpσpωq. Firstly, it can be seen

that the auxiliary symbol g1 introduced in Equation (5.7.33) is exactly the normalized
first-order gain-function of a single stage, as defined in Equation (5.8.24)

g1 ” 1

ρ0
r1 ` i kW1pkqC1β1s ψ̃pkC1β1q “ G1pA1, B1q, (5.8.49)

with A1 ” eU1

γ1σp
Y pr1

1kq and B1 ” kC1β1σp. With this, Equation (5.7.56) yields

ρrφ2,1spqq “ ρ0 C
:
2 cospC:

2qqG:
2, (5.8.50)

where G:
2 might be referred to as the first-order, two-step gain function, which can be

written explicitly as

G
:
2 “

„
1 ´ k β

:
2

eU1 Y pr1
1kq

γ1


ψ̃pk β:

2q
ρ0

´G1pA1, B1qC:
2C1β2k

eU2 Y pr1
2C1kq

γ2

ψ̃pC:
2C1β2kq
ρ0

.

(5.8.51)
After defining A2 ” eU2

γ2σp
Y pr1

2kq, B:
2 ” kβ

:
2σp and substituting C:

2C1β2 “ β
:
2 ´C1β1, the

gain function in dependence on the normalized parameters can be written as

G
:
2pA1, B1, A2, B

:
2q “ G1pA1, B

:
2q `A2G1pA1, B1q

´
B

:
2 ´B1

¯
e

´ 1

2

´
B

:
2

´B1

¯
2

. (5.8.52)

See Figure 6.12 for a plot of this function.
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6 Semi-Lagrangian Vlasov Simulations

As outlined in Section 2.5, simulating large collective many-body systems is not a trivial
endeavor. Apart from developing a code in a way that it is actually capable of computing
the evolution such a system in a sensible amount of time, another challenge is to have
it be tolerant of unavoidable numerical artifacts. Numerical artifacts are differences be-
tween the numerical representation of the system and the exact solution, that stem solely
from deficiencies of the simulation code. In particular when investigating instabilities,
it is important to ensure that the evolution of the instability is not affected significantly
by numerical artifacts. Every simulation approach has its own class of potential arti-
facts. For a given instable system, it is therefore advisable to choose an approach whose
artifacts couple to the instability as little as possible.

The microbunching instability is driven by the self-amplification of inhomogeneities
in the charge density of the electron bunch. A good simulation approach is therefore
one that introduces no or only little charge-density inhomogeneities artificially. Fur-
ther, it would be advantageous if the method allowed to simulate a system without any
significant inhomogeneities at all.

Lagrangian simulation approaches represent the many-body system as an ensemble
of particles. Due to the particulate nature of this representation, it inevitably introduces
inhomogeneities in the phase-space density, and therefore in the charge density. This
phenomenon is referred to as artificial shot-noise. Coupling of the artificial shot-noise
to the instability might be subdued using smoothing techniques. Great care has to
be taken when applying smoothing to the charge density, in order not to smooth out
the contributions of the actual instability to the charge-density inhomogeneities. This
becomes especially troublesome when trying to simulate the emergence of the instability
from actual small-scale, small-amplitude inhomogeneities that were added to the system
on purpose. Then, the artificial shot-noise can easily dominate the total charge-density
inhomogeneities. Smoothing out the artificial contributions then also eradicates the
purposefully added “seed” inhomogeneities, which invalidates the approach. The only
way to lessen the artificial shot-noise without smoothing is to use a sufficiently large
amount of macro particles. In particular when simulating instabilities that occur on
short length scales compared to the overall extent of the system, a substantial amount
of macro particles might be required. Super-computers of the early 21st century – with
many hundreds or thousands of cores – do make it possible to simulate many-body
systems using close to as many macroparticles as actual particles present in the physical
system [85]. But even then, typical computation times amount to days, if not weeks.
Overall, it is not hard to find arguments against using a Lagrangian approach to simulate
the microbunching instability.

Eulerian and Semi-Lagrangian methods, as introduced in Sections 2.5.2 and 2.5.3,
do not use particles, but represent the phase-space density by storing its values on a
grid. As no particles are used, these methods do not suffer from artificial shot-noise and
are therefore better suited to simulate the microbunching instability. Of course, also
Eulerian and Semi-Lagrangian methods are not free of artifacts. In Semi-Lagrangian
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codes, the phase-space density has to be interpolated to obtain its values between grid
points, which introduces interpolation errors. Eulerian codes typically need to determine
gradients of the phase-space density, for instance by finite-difference schemes, which also
introduces errors. Compared to artificial shot-noise, the magnitude of these artifacts
is typically much smaller. Further, these artifacts are typically not pseudo-randomly
distributed and have well-defined error bounds.

Grid-based methods, however, have to overcome a challenge that Lagrangian methods
do not: the amount of grid points required – and therefore the amount of computer
memory required – to represent a phase-space density with high enough resolution, grows
exponentially with the dimension of the phase-space. This is the curse of dimensions.
In particle-based methods, there is no such dependence on the dimension of the phase-
space. There, only the number of coordinates stored for each particle increases with the
dimension. Nevertheless also in particle-based methods, the number of particles has to
be increased exponentially to achieve constant resolution in phase-spaces of increasing
dimension. One, however, always has the option to choose fewer particles and accept
the reduced resolution. Grid-based methods are therefore especially suited for low-
dimensional systems. Simulations of full six-dimensional phase-spaces using grid-based
methods are not common.

Another challenge that grid-based methods face is the fact that some phase-space
densities do not lend themselves readily to be represented on a simple homogeneous grid,
due to their shape. In particular, if the volume of the support – the region in which
the phase-space density attains a non-zero value – is much smaller than the volume of
the minimum bounding rectangle of the support, a homogeneous grid will mainly cover
empty areas of phase-space and only a small amount of grid points will actually be in the
support. As a result, computer memory will be wasted on storing a large amount of zeros,
representing the empty regions of phase space, which makes this approach numerically
unfeasible. We call such phase-space densities exotic. A metric for the exoticness is
the ratio between the volume of the support and the volume of its minimum bounding
rectangle. In some cases, it is possible to reduce the exoticness of a phase-space density
by a suitable coordinate transformation [51]. This strategy is particularly advantageous,
if the exoticness stems mainly from linear correlations between the dimensions. Then,
the system can be treated in the decorrelated coordinates, in which the less exotic phase-
space density can be represented efficiently on a homogeneous grid, ensuring of course
proper transformation of the equations of motion. If, however, the exoticness is caused
by non-linearities in the shape of the support, this procedure is more cumbersome,
as determining the appropriate transformation is generally not straight-forward and
applying it most likely results in overly intricate equations of motion. In particular,
the longitudinal phase-space density of electron bunches in FELs usually has such a
non-linear shape, as it picks up non-linearities from collective effects, rf-acceleration,
and magnetic chicanes. For this type of non-linear, exotic phase-space densities, it is
advisable not to use a homogeneous grid, but rather to employ some form of domain
decomposition in order to make the numerical representation more efficient.

In reference [71] the author of this thesis presents a proof-of-principle, showing that
tree-based domain decomposition is suitable to facilitate efficient semi-Lagrangian Vlasov
simulation of the longitudinal phase-space densities in FELs. During the course of this
PhD project, the proof-of-principle code was largely extended and made serviceable to
properly simulate actual physical systems. The result is SelaV1D – a one-dimensional
semi-Lagrangian Vlasov simulation code [53].

In the following, the concept of tree-based domain decomposition is briefly outlined,
which is presented in reference [71] in much more detail. Subsequently, the key im-
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provements and some of the new features that were integrated in SelaV1D are presented.
Finally, numerical results for the microbunching instability obtained from SelaV1D are
presented and compared with the perturbation theory derived before.

6.1 Tree-Based Domain Decomposition

In tree-based domain decomposition, the simulation window – the part of phase-space
which contains the phase-space density – is subdivided into a hierarchy of nested hyper-
rectangles. Each rectangle in the hierarchy can be the parent of smaller child rectangles
contained within it. If a rectangle is not a parent, it is called a leaf. Only the outermost
rectangle, which covers the whole simulation window, does not have a parent, which
makes it the root of the tree. In SelaV1D, the geometry of the child rectangles is chosen
so that they contain the union of the half-phase-spaces of their parent rectangle along
each dimension, see Figure 6.1. The graph of the parent-child relationships of these
rectangles forms what is known as a tree [86], which gives the method its name.

Such a tree can be used to create a data structure that minimizes the number of
grid points outside of the support of the phase-space density. To that end, the tree is
generated in a way so that only those rectangles that intersect the support supppΨq of
the phase-space density Ψ are parents. Mathematically, the support of many typical
phase-space densities actually covers the entire phase-space supppΨq “ R

2n, as Ψ might
become arbitrarily small but is nowhere exactly zero. Numerically, this issue can be
circumvented by using the truncated ǫ-support

suppǫpΨq ”
 
z P R

2n | Ψpzq ě ǫ
(
, (6.1.1)

where ǫ P R is a suitably chosen threshold value. Each leaf of the resulting tree is
assigned a homogeneous grid which covers it. Only on these leaf-grids, the values of the
phase-space density are stored in memory. No values are stored for phase-space regions
not covered by leafs. As by definition each leaf intersects the support suppǫpΨq of the
phase-space density at least partially, this procedure minimizes the amount of wasted
computer memory.

This data structure and the associated routines – in particular the interpolation
routines – provide the key functionality for efficient semi-Lagrangian simulation of exotic
phase-space densities. We therefore deemed it prudent to implement them in a separate
library libselav, as they might be useful for future projects, apart from SelaV1D. It is
noteworthy that the hyper-tree structures offered by libselav can be of any dimension.
As SelaV1D simulates systems with one-degree of freedom it uses libselav for its two-
dimensional trees. In the following, most of the enhancements are explained for a two-
dimensional phase-space, as this is what SelaV1D uses. Nevertheless, all of the presented
concepts and routines are applicable in phase-spaces of arbitrary dimension and are, in
fact, implemented in libselav in a dimension-agnostic way.

6.2 Enhancements of the Semi-Lagrangian Vlasov Code

SelaV1D has its origins in the unnamed proof-of-concept code described in [71]. To
make SelaV1D suitable for actual simulation work, large parts of the existing code were
reworked and many new features were implemented in both SelaV1D and libselav. In
the following, some of the most important enhancements will be highlighted.
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Figure 6.1: Tree-based domain decomposition of an exotic phase-space density. a) the
phase-space density; b) hierarchy of rectangles covering the support of the phase-space
density; c) part of tree at an intermediate magnification; d) detail showing leafs of the
tree and the location of the grid points covering them (blue dots).
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Figure 6.2: Two possible layouts of the grid covering a leaf rectangle. Circles mark the
position of the grid points. The new layout used by SelaV1D is on the left. On the right
is the old layout used in the proof-of-principle code. This examples depicts the case of
four grid points per dimension. In the actual implementation, the number of grid points
per dimension can be any power of two.

6.2.1 Grid Layout and Inter-Leaf Interpolation

A major shortcoming of the proof-of-concept implementation was an unfavorable layout
of the grid that covers the leaf rectangles. In Figure 6.2, the old and the new layout
are depicted. The advantage of the old layout is that it allows to linearly interpolate
the phase-space density anywhere within a leaf, using only the grid points contained in
that leaf. This simplified the implementation in the proof-of-concept code significantly.
However, using the old layout phase-space points on the edges and the corners of a leaf
rectangles were sampled multiple times by neighboring leafs, as illustrated in Figure 6.3.
This redundant sampling of grid points is clearly not optimal for memory efficiency.

In the new layout, the grid points of neighboring do not overlap, so that all grid
points are sampled only once. While the illustrations shown here depict only the two-
dimensional case, this approach also works in higher dimensions, which is also imple-
mented in libselav. As in the new layout the grid on a single leaf misses points on
half of its edges, it is no longer possible to interpolate every point within a single leaf
using only its own grid points. Interpolation in the region between the outer-most grid
points and the edges of the leaf requires grid points from the neighbors of the leaf. This
complicates the interpolation routine, as the appropriate grid points have to be gath-
ered from the neighbors and be put into a temporary grid, based on which the actual
interpolation is then calculated. A routine is implemented in libselav that constructs
such a temporary, local grid of selectable size around any given phase-space point.

The tree-structures implemented in libselav automatically keep track of the neigh-
bors of any leaf while the tree is constructed. Determining a leaf neighbor is therefore a
constant time look-up operation, which is crucial for the performance of this approach.

Being able to use the grid points of neighbor leafs enables another improvement
implemented in SelaV1D: higher-order interpolation schemes. For linear interpolation,
only the four grid points closest to the interpolation point are required – the so-called
nearest neighbors. Higher-order interpolation schemes, however, need more than the
nearest neighbors. In the proof-of-principle code, only linear interpolation was possi-
ble, as each leaf did contain the required nearest-neighbor grid points of of all points in
the phase-space region it covers, but higher-order interpolation was impossible as that
requires points outside outside of the leaf – which were inaccessible in that implemen-
tation. Thanks to the new ability to construct local grids of any size, it was possible to
implement higher-order interpolation schemes in SelaV1D.

6.2.2 Higher-Order Interpolation

In semi-Lagrangian codes, the new value of a phase-space density at a given point after a
time step is determined by tracking the phase-space coordinates of that point backwards
in time and evaluating the old phase-space density at the resulting point. As the phase-
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Figure 6.3: Grid points covered by neighboring leafs. Using the old layout (right), phase-
space points on the edges of the leaf are sampled two times, those at the corners four
times, as indicated by multiple circles. With the new layout (left), every point in phase-
space is sampled only once.

space density is represented numerically on a grid, its value is known exactly only on
the grid points. However, the back-tracked coordinates generally do not coincide with
a grid point. To determine a value for the phase-space density at such off-grid points,
interpolation, based on the surrounding grid points, is necessary. Interpolation therefore
plays a central role in semi-Lagrangian simulation codes and the interpolation scheme
determines important performance parameters of the code.

6.2.2.1 Spline Interpolation

One well-known interpolation method, that is often used in various applications, is the
so-called spline interpolation, and in particular cubic spline interpolation [87,88]. With
cubic spline interpolation, a one-dimensional function is interpolated between the grid
points piecewise by third-order polynomials. The coefficients of these polynomials are
chosen in a way that the first and second derivatives of the interpolating function are
continuous at the grid points. Coefficients that fulfill these requirements can only be
calculated by taking into account all grid points and not only those closest to the in-
terpolation point. Spline interpolation is therefore a global interpolation method, as all
grid points influence the value of the interpolation function everywhere.

Extending one-dimensional spline interpolation to arbitrary dimensions is not trivial,
as for each dimension beyond the first, spline coefficients have to be recalculated based
on interpolated values between all grid points along the previous dimension. Spline
interpolation has been used successfully in codes which use a model of the phase-space
dynamics, in which in each time-step map the phase-space coordinates change only
along a single phase-space dimension [51, 89]. In two dimensions, this correspond to
kick- and drift maps. In that case, multi-dimensional interpolation is not needed, as
only interpolation along that single dimension is necessary.

In SelaV1D, spline interpolation is not used, as we decided to allow for arbitrary
maps, not only kick and drift maps.

6.2.2.2 Local Polynomial Interpolation

Another approach, better suited for SelaV1D, is the local polynomial interpolation, which
we already hinted at, when we discussed the grid layout used in SelaV1D. In local inter-
polation schemes, only a small number of grid points around the point to be interpolated
is used to construct an interpolating polynomial. As a result, each grid point contributes
only within a finite region around it to the overall piecewise interpolating polynomial.

A one-dimensional local polynomial interpolation scheme can be easily extended to
multiple dimensions. This is achieved by decomposing the multi-dimensional interpola-
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tion into multiple one-dimensional interpolations along each dimension [87,90]. For each
(hyper-)row along the ith dimension of the local grid, the value of the one-dimensional in-
terpolating function is calculated at the ith coordinate of the interpolation point. These
interpolated points in turn form a grid whose number of dimensions is reduced by 1
compared to the previous grid. The process is repeated for the pi`1qst dimension of the
new grid. At its end, this recursive procedure yields the final result for the interpolated
value. For example, given a homogeneous 4 ˆ 4 grid with known grid constants and
with the values R4ˆ4 Q y# “ ty0,0, . . . , y3,3u, a four-point one-dimensional interpolation
scheme INTERP1D : R ˆ R

4 Ñ R is extended to the two-dimensional interpolation
scheme INTERP2D :R2 ˆ R

4ˆ4 Ñ R via

INTERP2D
´
x0, x1; y

#
¯

“INTERP1Dpx0; (6.2.1)

INTERP1Dpx1; y0,0, y0,1, y0,2, y0,3q,
INTERP1Dpx1; y1,0, y1,1, y1,2, y1,3q,
INTERP1Dpx1; y2,0, y2,1, y2,2, y2,3q,
INTERP1Dpx1; y3,0, y3,1, y3,2, y3,3qq.

This way, the multi-dimensional interpolation function inherits many of the proper-
ties of the underlying one-dimensional interpolation function. In particular, it is typi-
cally desirable for the interpolating function to be continuously differentiable to some
degree. From the construction of the tensor interpolation, it becomes apparent that,
if the one-dimension interpolation function is continuously differentiable, then so is the
multi-dimensional interpolation function.

To achieve a continuously differentiable interpolant, the one-dimensional interpo-
lating polynomial has to be constructed in a way so that the derivatives of the two
polynomials of two neighboring grid cells – the region enclosed by two grid points –
attain the same value at the location of their common grid point. Lagrange polynomials
are ill-suited for this task as they are fully defined by the values grid points alone and
therefore do not provide a handle on the derivatives of the resulting interpolation func-
tion, see Figure 6.4a. Better suited are interpolation schemes that take the derivatives
the grid points into account explicitly. One example is Hermite interpolation [88], which
allows to specify the value of the interpolant as well as its derivatives up to a given order
at all grid points. It is well-known how to construct Hermite interpolation polynomials
of any order for any number of grid points. If only a small number of grid points and
derivatives is considered, the interpolating polynomials can also be constructed directly.
With such an interpolation scheme, the derivatives of the interpolating polynomials of
two neighboring grid cells at their common grid point can be chosen freely. By choosing
the same values for the derivatives of the two polynomials, continuous differentiability
is achieved.

6.2.2.3 Smooth Local Polynomial Interpolation

In SelaV1D, only the values of the phase-space density is known at the grid points,
whereas the values of its derivatives are not known explicitly. Hence, the question
arises, which values to choose for the derivatives. Without any additional knowledge
about the analytical derivatives, the only way is to approximate them, based on the
values of the phase-space density, using finite differences [91]. Following this approach,
it is imperative to choose a finite-difference scheme that yields the same value for both
grid cells at their common grid point, to achieve continuous differentiability.

Consider an evenly spaced grid with grid constant h, so that the locations of the
grid points fulfill xi ´ xj “ hpi ´ jq. The goal is to construct a polynomial of degree
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Figure 6.4: Comparison of a) third-order Lagrangian interpolation and b) cubic C1

interpolation. Note the kink in the effective interpolant at xi`1 in a), indicating a
discontinuity in the derivative. Using cubic C1 interpolation, the derivative is continuous
at the grid cell boundaries. In b), the values of the interpolant of a cell does not match
the grid value at the outermost of its four grid points. This is acceptable, because the
interpolant is only ever evaluated between the two innermost grid points while the outer
grid points are only used to determine the derivatives at the cell boundaries.

3 that is C1 at the grid points using finite differences. To this end, we take the four
grid points at xi´1, . . . , xi`2, with xi´1 ă xi ă x ă xi`1 ă xi`2, where x is the point to
be interpolated, together with their values yi´1, . . . , yi`2. The interval rxi, xi`1s is the
grid cell in which the interpolation polynomial is evaluated. In order for the derivative
of the interpolation function f 1pxq to be continuous across grid cells, we have to choose
a finite difference scheme to determine values for the derivatives at the lower boundary
y1´
i ” f 1pxiq and the upper boundary y1`

i ” f 1pxi`1q, so that

y1`
i “ y1´

i`1. (6.2.2)

This condition can be fulfilled by using the central differences at the cell boundaries

y1´
i ” yi`1 ´ yi´1

2h
and y1`

i ” yi`2 ´ yi

2h
, (6.2.3)

which approximate the derivatives accurately to second order. Using this scheme, two
neighboring grid cells agree on the same value for the derivative at their common grid
point, while using only their own respective sets of four grid points.

This approach can be extend to increase the smoothness of the effective interpolant
further by fixing also its higher derivatives to values determined by finite difference
schemes. To achieve C2 interpolation, the values for the second derivatives at the cell
boundaries y2´

i ” f2pxiq and y2`
i ” f2pxi`1q can be determined using the second-degree

finite differences

y2´
i ” yi`1 ´ 2yi ` yi´1

h2
and y2`

i ” yi ´ 2yi`1 ` yi`2

h2
, (6.2.4)
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Figure 6.5: Quintic C2 interpolation based on four grid points.

which are accurate to second order. Remarkably, both the first and second central finite
differences can be calculated using four grid points and yield second-order approxima-
tions for the respective derivative. Hence, it is possible to construct a C2 interpolant
using local grids of size four. An example of the resulting interpolation function is shown
in Figure 6.5.

Implemented in SelaV1D is bilinear and bicubic Lagrange interpolation as well as
bicubic C1 and biquintic C2 interpolation, as described above, plus nearest neighbor
interpolation for testing purposes. See Figure 6.6 for a visual comparison of the methods.

6.2.3 Input Language Parser

In order to allow for flexible simulation setups, SelaV1D is controlled by a simple in-
put language. Notably, it allows phase-space densities and Perron–Frobenius opera-
tors to be assigned to variables, so that they can be handled as objects. In addition,
many of the usual floating-point arithmetic operations, string manipulation and flow-
control features commonly found in contemporary scripting languages are implemented.
The following example shows one the most elementary operations, namely initializing
a phase-space density object; generating a collective Perron–Frobenius operator object;
executing Perron–Frobenius steps, which yield more phase-space density objects; and
finally writing output generated from the resulting densities.

psi0 = psd_gauss( // define a bi-gaussian density

sig_q=2, sig_p=0.5, // set RMS values

correlation=0.1, // correlation parameter

limits=[-10,-10,10,10] // size of the root rectangle

);

drift = map_driftl(1); // PF op. of a linear drift-map

kick = map_poisson1d(psi0); // collective PF operator,

// calculated from psi0

psi1 = propagate(psi0, kick); // apply coll. PF operator to psi0

psi2 = propagate(psi1, drift); // apply drift PF operator to psi1

write_localmoments(psi0, "localmoments-psi0.dat", 1); // write output

write_localmoments(psi1, "localmoments-psi2.dat", 1);

A description of the features of the input language, as well as a complete list of the
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Figure 6.6: Visual comparison of interpolation methods implemented in SelaV1D: a)
bilinear Lagrangian, b) bicubic Lagrangian, c) bicubic C1 , and d) biquintic C2. The
test function is a Gaussian distribution with zero mean and σq “ σp “ 1, sampled on a
4 ˆ 4 grid.

available phase-space density initialization routines and Perron–Frobenius operators can
be found in the documentation of SelaV1D [53].

6.2.4 Import and Export of Particle Ensembles

Most beam-dynamics simulation codes follow the Lagrangian approach and simulate the
evolution of a bunch by tracking an ensemble of macroparticles. To enable some de-
gree of interoperability between SelaV1D and these particle-based codes, routines have
been implemented in SelaV1D that generate particle ensembles from the numerical rep-
resentation of the smooth phase-space density and vice versa. However, as SelaV1D is
a one-dimensional code, when importing an ensemble only the longitudinal coordinates
can be taken into account even if the input particle ensemble is six-dimensional. Also,
when exporting a particle ensemble, only the longitudinal conjugate coordinates can be
generated.

6.2.4.1 Export

To generate a particle ensemble that is distributed with the probability density repre-
sented on the tree, the following algorithm is used: First, the integrated probability
density of each leaf is calculated and stored in that leaf in an auxiliary variable. This
represents the probability to find any particle inside a given leaf. These probabilities are
then recursively propagated upwards in the tree hierarchy, by exploiting the fact that
the integrated probability-density contained in a parent rectangle is equal to the sum of
the probabilities of its child rectangles. At the end of this process, every rectangle in the
tree has its integrated probability-density stored in an auxiliary variable. This results
in what is known as a weighted graph [86].
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After this setup step, the actual particle ensemble is generated. A single particle
is generated by conducting a weighted descent of the rectangle tree: Starting with the
root of the tree as the current rectangle, the next rectangle is randomly selected among
the children of the current rectangle. This random selection is done in a way so that
the probability of the child rectangle with index i to be selected as the next rectangle
is given by its relative integrated probability P̃i ” PiřN

n“1
Pn

, where P1, . . . , PN are the

integrated probability densities of the child rectangles of the current rectangle. Note
that in two-dimensional trees it is N “ 4. This process is continued recursively with the
next rectangle as the current rectangle, until the current rectangle is a leaf. Then, based
on the probability density stored on the grid of that leaf, the coordinates of the particle
to be generated are determined via rejection sampling [87], where the domain of the
rejection sampling is limited to the phase-space area covered by the leaf. This process
is repeated until the requested number of particles is generated. It needs to be stressed
that this weighted descent method is crucial for the efficiency of the sampling routine:
Applying rejection sampling directly to the root rectangle, would be highly inefficient
for exotic phase-space densities, because the vast majority of samples would be rejected
immediately, as they fall out of the support. This would cause an exceedingly large
number of samples to be generated in the process.

6.2.4.2 Import

To import a particle ensemble – which was for instance generated as the output of a
particle-tracking code – into SelaV1D, it is necessary to generate a smooth approximation
of the phase-space density from it .

One method to achieve this is kernel density estimation (KDE) [92,93]. Using KDE,
an estimator Ψ̂ for the phase-space density is given by

Ψ̂pzq “ 1

N

Nÿ

i“1

K̂pz ´ ziq, (6.2.5)

where K̂ : R2 Ñ R is a suitable kernel function, and zi are the phase-space coordinates
of the N particles. Conceptually, this is equivalent to treating the particle ensemble as
a Klimontovich density which is convolved with the kernel function

Ψ̂pzq “ K̂pzq ˚
Nÿ

i“1

δpz ´ ziq. (6.2.6)

Usually, the kernel function is chosen as K̂pzq “ Kp}z}{αq, where } ¨ } is an appropriate
norm, K : R Ñ R is a one-dimensional kernel with compact support, and α is a smoothing
parameter. This approach was evaluated during the early development of SelaV1D, but
was dismissed after some testing. It became apparent that phase-space densities gener-
ated with this method still show a considerable level of artificial density modulations,
stemming from the shot-noise of the input particle ensemble. Increasing the smoothing
parameter would partially suppress these artifacts. Suppressing these artifacts to a level
where they would not seed the microbunching instability, however, required value a for
the smoothing parameter that was large enough to significantly affect the macroscopic
shape of the charge density as well as the energy spread. Due to these issues with KDE,
a different approach was implemented in SelaV1D.

In certain cases, the phase-space density can be approximated by a function of the
form

Ψpq, pq “ ρpqqψpq; pq, (6.2.7)
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where ρp¨q is the charge density and ψpq; ¨q is a one-parametric family of energy distri-
butions, where q is the family parameter. Such a distribution family can be constructed,
for instance, from a Gaussian distribution whose mean µp and standard deviation σp
depend on q:

ψpq; pq “ ξ pµppqq, σppqq; pq ” 1?
2πσppqq

exp

˜
´1

2

„
p´ µppqq
σppqq

2¸
. (6.2.8)

The functions µppqq and σppqq take the notion of the local mean energy and the local en-
ergy spread, respectively. Pertaining to beam-dynamics simulations, it became apparent
that the phase-space density of a bunch immediately after the gun can be approximated
sufficiently well by a function of this form. Of course, not all phase-space densities can
be approximated in this manner. Especially, if the support of the phase-space density
undercuts itself, it is typically not possible to find an appropriate distribution family for
this approach.

Assuming the actual phase-space density can be approximated by Equations (6.2.7)
and (6.2.8), it is possible to construct a smooth numerical representation from the local
statistical moments of a given particle ensemble. To that end, first the particles are
binned with respect to their longitudinal coordinates Q “ tq1, . . . , qNu, into equidistant
bins bi “ rq̂i ´ h

2
, q̂i ` h

2
q with center points q̂i and bin width h. Estimates for the local

mean and standard deviation of the energy at q̂i of the ensemble can then be determined
from the first and second statistical moments of the sample in the ith bin

µppq̂iq « µ̂p,i ” 1

|Q X bi|
ÿ

n|qnPbi

pn (6.2.9)

and

σppq̂iq2 « σ̂2p,i ” 1

|Q X bi|
ÿ

n|qnPbi

ppn ´ µ̂p,iq2 , (6.2.10)

respectively. Based on these estimates, Equation (6.2.8) can be approximated by choos-
ing interpolating functions for the local mean energy µppqq Ñ µ̂ppqq and standard devi-
ation σppqq Ñ σ̂ppqq, which interpolate between the respective bin values µ̂ppq̂iq “ µ̂p,i
and σ̂ppq̂iq “ σ̂p,i. To ensure the smoothness of the resulting phase-space density, the
one-dimensional C1 or C2 interpolation schemes described in Section 6.2.2.3 can be em-
ployed. The result is a smooth phase-space density that – by construction – does not
support inhomogeneities on scales much smaller than h. See Figure 6.7 for an example
of a particle ensemble and the phase-space density generated by this method of local
moments.

Using this method, it was possible to generate phase-space densities from particle
ensembles with sufficiently small residual shot-noise artifacts which do not seed the mi-
crobunching instability. This method can be extended to include higher-order statistical
moments, if an analytical expression for a distribution family is available that is appro-
priately parameterized in terms of its statistical moments up to the requested order.

6.2.5 Local Poisson Shot Noise

Potentially, the microbunching instability can be seeded by the shot noise present in
the bunch. In macroparticle tracking codes, shot-noise effects can be accounted for
straightforwardly by choosing a sufficiently large number of simulated macroparticles,
which is close to the actual number of electrons in the bunch. In grid-based simulation
methods, such as the semi-Lagrangian method, there is no inherent shot noise. To study
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Figure 6.7: a) Subset (N “ 104) of the output of a particle-tracking simulation of the
FLASH gun [94]. b) smooth phase-space density generated from the ensemble a) using
the method of local moments.

shot-noise effects using a semi-Lagrangian code, the inhomogeneities induced by shot
noise have to be added explicitly to the initial condition of the phase-space density.

In SelaV1D, a routine was implemented to add shot-noise inhomogeneities to the
grid-based representation of a phase-space density. This is achieved by modifying the
grid values of an initially homogeneous phase-space density Ψ0. For each grid point zij ,
the local integrated phase-space density is approximated by uij ” Ψ0pzijqd2zij , where
d2zij is the phase-space area covered by the grid cell. With this, the expected number
of particles in a grid cell is then given by

λpzijq ” λij “ |Qb|uij
e

, (6.2.11)

where Qb is the total charge of the bunch. Each grid value Ψ0pzijq is replaced by a
realization of a random variable Xij , normalized to the cell volume

Ψ0pzijq Ð Xij

d2zij
. (6.2.12)

Each of the random variables Xij follows a Poisson distribution, so that the probability
of it attaining the value k P N

0,` is given by

P pXij “ kq “
λkij e

´λij

k!
, (6.2.13)

where λij is the local expected number of particles as defined above. After this modifica-
tion, the local statistics of the modified phase-space density matches the particle-number
statistics of a locally Poisson-distributed particle ensemble. See Figure 6.8 for plots of
two examples of phase-space densities that were modified in this way. In [95, 96], a
conceptually similar method is proposed, where the assumption is made that the ex-
pected number of particles in a grid cell is large so that the Poisson distribution can be
approximated by a Gaussian distribution.
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Figure 6.8: Initially Gaussian phase-space densities (σq “ σp “ 1) sampled on a 128ˆ128
grid after adding local Poisson shot noise, for bunches with is a) |Qb|{e “ 104 and
b) |Qb|{e “ 106.

6.3 Discrete-Time Long-Bunch Model

For a first benchmark, SelaV1D is applied to the ultra-relativistic discrete-time bunch
compression model and the results are compared with the perturbation theory derived
in Section 5. In this model each bunch-compression stage is treated as a single mi-
crobunching step. The long linac section is treated as a single collective kick, caused
by longitudinal space charge forces, plus the kick of the accelerating cavities. After the
linac section follows a magnetic chicane, which acts via a drift map on the longitudinal
phase-space.

Locally, the strength of the longitudinal space-charge kicks is determined by an
impedance function, which depends on the beam energy and the transverse beam size.
These parameters vary along the linac section due to the acceleration of the bunch and
the transverse dynamics governed by the optics in the section. In a more detailed model
of the dynamics, the variation of these parameters would be accounted for by integrating
the local impedance function along the beamline, yielding an integrated impedance func-
tion. As this approach requires detailed knowledge of the energy profile and optics along
the linac, the number of free parameters is large. To keep the number of free parameters
small for this benchmark, the impact of the space-charge kicks is instead approximated
by using an characteristic impedance function. In this approximation, the impedance
function is considered to be constant along the linac section, and a single characteristic
value is used for each of its free parameters, namely the beam energy and transverse
beam size. Typically, the mean value of the respective parameters along the linac is a
suitable choice for this characteristic value. The only remaining free parameter is the
length of the linac section.

The bunch compression chicane is modeled as a single linear drift map. Collective
kicks that occur in the chicane due to space-charge and coherent synchrotron radiation
are neglected in this model. Working in the dechirped frame introduced in Section 3.4.4,
the drift map of the chicane can then be parameterized with respect to three parameters:
the compression factor, the chicane strength, and the beam energy at the chicane.

For the phase-space density, we will use the long bunch approximation. In this
approximation, it is assumed that the bunch is longitudinally much longer than the
microbunching structures that are investigated. Edge effects, in particular the collective
kicks caused by the rising and falling flanks of the charge density at the front and the
back of the bunch, do not affect the microbunching process in the core of the bunch, in
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that case. Therefore, the microbunching instability can be studied by simulating only a
portion of the full phase-space density taken from the core part of the bunch. The initial
phase-space density in the core of the bunch is considered to have a Gaussian energy
distribution with standard deviation σp, and initially no dependence on the longitudinal
coordinate q. The scaling of the charge density is fixed by specifying the initial bunch
current I0. As we work in the dechirped frame, the energy chirp of the bunch is accounted
for by the choice of the coordinates and does not have to be included explicitly in
the phase-space density. This allows also chirped bunches to be represented by a q-
independent phase-space density.

In total, this model has six free parameters per bunch compression stage: the char-
acteristic energy Ē, the characteristic beam size r̄, the length of the linac section L, the
chicane energy EBC, the compression factor C, and the chicane strength M56; plus two
free parameters specifying the initial conditions of the phase-space density: the initial
energy spread σp and current I0.

To seed the microbunching instability in the simulation, the initially homogeneous
phase-space density is perturbed by a modulation with a given wavelength λ and per-
turbation amplitude ǫ, via Ψpq, pq ÞÑ p1 ` ǫq cosp2πq{λqΨpq, pq.

Setting the longitudinal size of the simulation window equal to the perturbation
wavelength, the total phase-space density is given by the periodic continuation of the
part contained in the simulation window. Support for this type of phase-space topology
has been implemented in SelaV1D, including the correct treatment of resulting periodic
boundary conditions in the routines that compute the collective maps. When the bunch
is compressed during the course of the simulation, the simulation window is resized
accordingly.

The perturbation theory derived in Section 5 can be applied to this model by treating
each bunch compression stage as a single microbunching step. This provides an excel-
lent opportunity to cross-validate the numerical results provided by SelaV1D against the
theory and vice versa.

6.3.1 Single-Stage Gain Functions

To determine the microbunching gain function numerically, multiple simulation runs are
needed. At the beginning of each run, the initial phase-space density is perturbed on
a wavelength λ with a perturbation strength ǫ, as described above. In each run, the
perturbation wavelength is set to a different value, while all other parameters constant
are kept constant. The perturbed phase-space density is then propagated according to
the discrete-time model. After the bunch-compression chicane, the charge density of
the phase-space density is calculated and written to a file. This file then contains the
values of the charge density ρj “ ρpqjq at equidistant longitudinal positions q0, . . . , qN´1,
where N is determined by the effective resolution chosen for the simulation. As the
simulation window is chosen so that it contains exactly one perturbation wavelength,
the grid constant is qj`1 ´ qj “ λ{N . This process is repeated for an array of initial
wavelengths λm, which cover the critical part of the gain curve, around the region of
maximum gain. In a post-processing step, the charge-densities are further evaluated.
Using discrete Fourier transform (DFT) [87], the harmonic content of the charge-densities
can be determined:

ρ̃npλmq ”
N´1ÿ

j“0

ρjpλmq e´2π i j n{N . (6.3.1)

The amplitude of the nth harmonic is equal to double the absolute value of the nth
component ρ̃n of the DFT. A numerical approximation Grns of the gain of the nth
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harmonic of the initial wavelength λm can therefore be obtained via

Grnspλmq “ 2

ǫn
|ρ̃npλmq|
|ρ̃0pλmq| , (6.3.2)

where the factor |ρ̃0pλmq|´1 provides the required normalization to the DC part of the
charge density.

From the free parameters of the discrete-time model, the normalized parameters A1,
B1, and r1 of the perturbation theory can be calculated directly:

A1 “ L

r̄

e I0 Z0

γ σp
, B1 “ CM56

σp

EBC

, and r1 “ r̄

γ
, (6.3.3)

with γ “ Ē
me c2

. With this, the theoretical gain functions given in Equations (5.8.26),(5.8.40),
and (5.8.45) can be evaluated.

6.3.1.1 Small Perturbation

Figure 6.9 shows the comparison of the numerical gain function, calculated from SelaV1D

simulations as described above, and the analytical gain functions derived from the per-
turbation theory, up to third order, for an example parameter set. These parameters
are comparable to a possible working point of the first bunch compression stage of
FLASH2020+. In these simulations, the perturbation parameter was set to a small
value ǫ “ 10´3. As can be seen, the numerical and analytic gain functions show excel-
lent agreement. This agreement provides strong verification not only for the validity of
the perturbation theory, but also for the numerical correctness of the simulation code
SelaV1D.

6.3.1.2 Large Perturbation

In the previous example, the perturbation parameter ǫ was chosen to a small value. The
gain function of the nth harmonic is, in that case, dominated by the nth order terms
of the perturbation series. If ǫ is not much smaller than unity, the nth harmonic is
also affected by terms in the perturbation series of order larger than n. For instance,
in Equation (5.8.44), the contribution of the third-order perturbation term to the gain
of the first harmonic was derived explicitly. Figure 6.10 shows the results of a SelaV1D

simulation with the same parameters as in Figure 6.9 but with ǫ “ 0.05. It can be seen
that the first-order analytic gain functions does not agree well with the numerical results.
Better agreement is achieved when the third-order corrections given by Equation (5.8.44)
are included, which yields the third-order gain function for the first harmonic G1p2π{λq`
ǫ2GI

3p2π{λq.
For wavelengths larger than 80µm, this third-order gain function matches the nu-

merical results well. For wavelengths smaller than that, the third-order gain function
predicts an extremum which is not reflected in the numerical results. This disagreement
in the small wavelength regime is the result of an effect that is illustrated in Figure 6.11.
In Figure 6.11a, the phase-space density after the first bunch-compression chicane is
depicted that results from a initial perturbation at the wavelength λ « 49µm. This
perturbation wavelength is in the region of maximum disagreement of theory and sim-
ulation depicted in Figure 6.10. In this case, multiple periods of the energy-modulated
phase-space density overlap and contribute to the phase-space density in the simula-
tion window, which longitudinally covers one compressed initial modulation wavelength.
This is due to the relatively large value of the impedance function at this perturba-
tion wavelength, resulting in large energy modulations, combined with the fact that the
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transverse motion caused by the dispersion of the chicane relative to the modulation
wavelength is larger at small wavelengths. If this over-shearing effect occurs, the insta-
bility shows a strong non-linear response to the perturbation so that already the low
harmonics are affected by very high-order terms of the perturbation series. In that case,
even the third-order gain function does not quantify the actual gain properly. At longer
wavelengths, such as λ « 120µm shown in Figure 6.11b, this over-shearing effect does
not occur. Then, the third-order gain function is sufficient to properly approximate
the actual microbunching gain. This explains the good agreement between theory and
numerics for long wavelengths shown in Figure 6.10.

This example illustrates important caveats that have to be kept in mind when inter-
preting analytic gain functions: Only when the perturbation amplitude is small, non-
linear contributions of higher-order terms of the perturbation series to lower-order har-
monics can be neglected. The instability is then well-described by the gain functions
derived from the perturbation theory at all wavelengths. If the perturbation amplitude
is not small, non-linear contributions can become significant. This significance can de-
pend on the perturbation wavelength, so that the analytic gain function might predict
the gain correctly only in certain wavelength regions. Including higher-order corrections
can extend the range of validity of the analytic gain function.

6.3.2 Two-Stage Gain Functions

The discrete-time long-bunch model can be easily extended to the case of two bunch-
compression stages. The second stage is described by a second set of parameters Ē2,
r̄2, L2, EBC,2, M56,2, and C2. From these, the parameters A2 and B

:
2 can be cal-

culated, which appear in the analytic first-order two-stage gain function G
:
2 given by

Equation (5.8.52), as described in that section. To simulate the two-stage case, the sim-
ulation is set up exactly as in the single-stage case but with an additional microbunching
step, reflecting the second compression stage. As before, the charge-density is written
to a file after the second compression stage and the numerical gain function of the first
harmonic Gr1s,2 is calculated using the same method as in the single-stage case. In Fig-
ure 6.12, a comparison of the numerical gain function Gr1s,2 and the analytic first-order

two-stage gain function G
:
2 is shown. As can be seen, they show excellent agreement.

This result verifies that the perturbation theory is valid also in the two-stage case.

In literature, a method might be encountered which aims to to estimate the two-
stage gain function without resorting to the full perturbation theory [97]. There, the
gain functions of both compression stages are calculated independently, and the total
two-stage gain function is estimated via the product of the two independent single-stage
gain functions. For the second stage, the initial beam parameters are amended to take
into account the compression from the first stage: I0,2 “ C1 I0,1 and σp,2 “ C1 σp,1. If
the first-order gain functions of the first and second stage calculated in this way are
denoted by Ǧ1,1pλq and Ǧ1,2pλq, respectively, the estimated two-stage gain function is

Ǧpλq “ Ǧ1,1pλq Ǧ1,2pλ{C1q. (6.3.4)

Of course, this is a rather crude approximation, as it neglects the influence of the first
stage on the phase-space density completely, apart from the fact that it is compressed.
As can be seen from Figure 6.12, the estimate resulting from this “method of multiplied
gains” is indeed not a good approximation of the actual first-order gain function and
should be used with great caution, if at all.
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Figure 6.11: Phase-space densities after a bunch compression stage with compression
factor C “ 4, simulated by SelaV1D using the same parameters as in Figure 6.10. The
initial perturbation wavelength is a) λ « 49µm and b) λ « 120µm.
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gain

initial wavelength λ / µm

Figure 6.12: Gain functions of the first harmonic after two bunch compression stages:
simulated by SelaV1D (plus signs), first-order two-stage perturbation theory (solid), and
the result of the method of multiplied gains (dotted). The parameters of the first stage
are the same as in Figure 6.9 and the parameters of the second stage are L2 “ 50m,
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6.4 Full Phase-Space Density Simulations for FLASH2020+

Thanks to its tree-based domain decomposition approach, SelaV1D is not only capable of
simulating simplified models with periodic boundary conditions – such as the discrete-
time long-bunch model shown in Section 6.3 – but also full phase-space densities with
a compact support can be simulated. In the discrete-time long-bunch model, non-linear
effects of neither the rf-cavities nor the magnetic chicanes could be included as that
would have broken the periodicity condition. Such restrictions do not exist when the
full phase-space density is simulated. Full-bunch simulations therefore enable not only
a more detailed description of the bunch but also allow to treat a more detailed model
of the longitudinal dynamics in the accelerator beamline.

In the following, the beamline model for full-bunch simulations with SelaV1D is de-
scribed. Further, full-bunch simulation results are presented that relate to the upgrade
project FLASH2020+ of the free-electron laser FLASH in Hamburg [30, 98]. Some of
the results presented in this section are also published in reference [99] by the author.

6.4.1 Simulation Model and Setup

In an FEL injector beamline, the longitudinal single-particle dynamics are typically dom-
inated by the rf-cavities and the magnetic chicanes. The longitudinal dynamics therefore
governed by the operating parameters of these elements and their positions within the
lattice. Coupling between the transverse and longitudinal dynamics can typically be
neglected, apart from the longitudinal dispersion that is created in the chicanes. Re-
garding collective effects, the longitudinal dynamics are influenced by the transverse
charge distribution, as it in principle affects the longitudinal space-charge forces. In the
one-dimensional space-charge model introduced in Section 4.1, this dependence is fully
described by a single parameter, namely the characteristic local transverse beam size.

To set up a full-bunch simulation with SelaV1D, the user provides a description of
the accelerator lattice and data for the optical functions βx,y along the beamline. A
lattice description consists of the positions, lengths, and default operating parameters
of the rf-cavities and chicane magnets. Beam optics data is specified as tuples of the
longitudinal position and the horizontal and vertical optical β functions. Together with
the transverse emittances – which are also specified by the user – this determines the
characteristic transverse beamsizes along the beamline.

From this information, a preprocessing script generates an input file for SelaV1D with
appropriate instructions to simulate the propagation of a bunch through the lattice. This
input file contains a number of parameters that can be adjusted by the user, such as the
operating parameters of the rf-cavities and the chicane magnets. Crucially, the input
file implements operator splitting to treat collective effects with higher fidelity: drift
spaces, cavities and chicane magnets can be split into multiple microbunching steps,
each comprising a collective kick followed by a single-particle map. The length of these
steps is selectable by the user. With respect to the representation of drift spaces, SelaV1D

does not rely on the ultra-relativistic approximation so that longitudinal dispersion due
to velocity effects can be taken into account.

6.4.2 Compression Working Points

One of the goals of the simulations presented below is to determine the influence of
different compression schemes on the microbunching instability at FLASH after the
FLASH2020+ upgrade. To this end, two compression working points (WPs) were stud-
ied. The first working point, referred to as WP1, was conceived to provide final beam
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BC1 BC2
I0 C1 C2 E α M56 E α M56

WP1 31.2A 4 4 146MeV 16˝ 139.9mm 550MeV 5˝ 72.6mm
WP2 20.0A 5 5 143MeV 16˝ 139.9mm 550MeV 5˝ 72.6mm

Table 6.1: Compression parameters of two compression working points.

ACC1 ACC39 ACC23
A φ A φ A φ

WP1 163.8MeV 11.87˝ 19.94MeV ´175.39˝ 415.1MeV 13.27˝

WP2 161.3MeV 12.91˝ 19.92MeV ´174.23˝ 413.3MeV 10.07˝

Table 6.2: RF settings calculated for two compression working points.

parameters that are particularly suited for the seeded operation of the FLASH1 beam-
line. Based on the results presented below, the microbunching performance of WP1
was deemed improvable and a second working point, WP2, was specified. Table 6.1
summarizes the key parameters of both working points. The rf-settings that achieve the
compression goals were calculated for both working points using the algorithm described
in Section 3.6 and are shown in Table 6.2. For WP2, a slightly lower energy of 143MeV
at the first chicane was chosen, as it became apparent that this enables a more linear
compression, while keeping the RF amplitudes within their technical limits. In fact,
143MeV is the established nominal energy at the first chicane since the FLASH2020+
related shutdown in 2021/2022. In Figure 6.13, the resulting phase-space densities after
the second chicane are depicted. They were calculated with SelaV1D, assuming an ini-
tially Gaussian phase-space density. In both cases, the central parts of the bunch show
a nearly linear dependence between the longitudinal position and the energy coordinate,
which verifies the validity of the algorithm used to calculate the rf-settings. As a conse-
quence, the final charge densities remain close to a Gaussian distribution. In particular,
the charge densities do not feature an unwanted current spike in the head of the bunch,
which can easily occur if the rf-settings are chosen less carefully.

6.4.3 Verification of the Large-Scale Dynamics

In a first effort to verify the validity of the results of simulations with SelaV1D, a com-
parison with the well-tried 6D particle tracking code elegant [63,100] was made. In this
section, we show comparisons of what could be called the large-scale dynamics, namely
those that determine the overall shape of the longitudinal phase-space distribution on
length scales in the order of the bunch length. This is in contrast to the small-scale
dynamics, which occur on smaller length scales, such as the microbunching instability.

Both elegant and SelaV1D were set up with the same lattice and the same initial
conditions for the bunch, for which a smooth Gaussian distribution was chosen, as not
to seed the microbunching instability. The optics data needed for SelaV1D was pre-
calculated for the lattice by MAD8 [60]. Both simulations start at the entrance of first
rf-module in order to exclude the low-energy gun region. As a figure of merit, the bunch
properties – in particular the charge density, the local mean energy deviation and the
local energy spread along the bunch – are compared after the second bunch-compression
chicane. To determine these quantities from the particle-based output of elegant, the
particles are binned into longitudinal slices, from which the local beam properties are
estimated via the statistical momenta of their energy distribution.

Figure 6.14 shows the case where no collective effects are included in the simulation
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Figure 6.13: Plots of the phase-space distributions after the second bunch compression
chicane and the corresponding charge densities for a) WP1 and b) WP2.

so that only the single-particle dynamics of the two codes are compared. The excel-
lent agreement indicates that the model of the longitudinal dynamics implemented in
SelaV1D is compatible with that used in elegant. As elegant, in contrast to SelaV1D,
simulates also the transverse single-particle dynamics, these results further verify that
the longitudinal dynamics are indeed not strongly coupled to the transverse dynamics,
and the longitudinal-only model of SelaV1D is adequate.

Figure 6.15 shows the results, when longitudinal space-charge forces are enabled in
both simulation codes. The rf-settings were tweaked slightly to counteract the reduced
compression that result from the LSC forces and achieve the same compression as before.
While the agreement – especially in the head and tail parts of the bunch – is still very
good, the results do deviate slightly in the central parts of the bunch. It is easily
conceivable that this deviation results from slight differences in the transverse beam
sizes considered by the two codes, which influence the longitudinal dynamics via the
LSC impedance. Both SelaV1D and elegant use the same model for LSC in which a
one-dimensional longitudinal impedance function is determined from the characteristic
transverse beam size. In elegant, this characteristic beamsize is calculated from the
standard deviations of the particles in the transverse configuration spaces and features
are implemented that allow the user to smooth the longitudinal charge density to reduce
the impact of the numerical shot-noise. In SelaV1D, the beamsize is determined from the
optical functions calculated by MAD8 and no smoothing is required. Slight differences
in this order of magnitude are therefore to be expected.

Overall, it can be concluded that the agreement of the large-scale beam dynamics
predicted by the two codes is more than satisfactory.

6.4.4 Numerical Gain Functions

After the validity of the full-bunch simulation setup was established, it is now used to
investigate the microbunching instability numerically. A straight-forward approach –
which was also followed in Section 6.3 – to quantify the microbunching instability is to
imprint a modulation onto the initial charge density of an otherwise smooth bunch and
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Figure 6.14: Comparison of simulation results by SelaV1D, and elegant for the bunch
properties after the second compression chicane for WP1. Collective effects are turned
off in the simulations.
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Figure 6.15: Comparison of simulation results by SelaV1D, and elegant for the bunch
properties after the second compression chicane for WP1. Longitudinal space-charge
effects are enabled in the simulation.
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determine the relative increase of the modulation amplitude after the bunch traversed
the beamline. By defining ρf rA, kspqq as the final charge density that results from an
initial modulation with amplitude A at a wavenumber k, then the gain function can be
defined via the Fourier transform ρ̃f rA, kspωq ” FωÐq as

GApC, kq “ |ρ̃f rA, kspC kq| ´ |ρ̃f r0, 0spC kq|
A

, (6.4.1)

where C is the total compression factor of the beamline. The arguments of the Fourier
transforms are scaled by the compression factor in order to account for the fact that
the modulation is shifted towards smaller wavelengths due to the compression. In this
form, GApC, k0q is the gain of a modulation at a given initial wavenumber k0. In many
cases, it is more instructive to report the gain at a given final wavenumber kf , which is
given by GApC, kf {Cq. By subtracting the term ρ̃f r0, 0s, contributions stemming from
the charge-density spectrum of an unperturbed bunch – which might be referred to as
the form factor of the bunch – are removed. The linear gain function is then defined
by the limit Glin ” limAÑ0GApC, kq. Numerically, this limit can be approximated by
choosing a sufficiently small perturbation amplitude. In practice it became apparent that
by setting A “ 10´4 a good approximation of the linear gain function can be achieved.

For the FLASH2020+ project, it is of particular interest to determine to which
degree the laser heater that is installed as part of the upgrade [101] can suppress the
microbunching instability. Situated upstream of the first bunch compression chicane, the
laser heater increases the energy spread of a bunch by inducing an energy modulation
at an optical wavelength in a modulator undulator, which is subsequently over-folded in
the chicane. For the purpose of studying the microbunching instability – which typically
occurs on the micrometer scale – the optical-scale energy modulation can be neglected
so that the effect of the laser heater can be treated by considering just the induced
increase of the initial the energy spread. To resolve optical-scale modulations on the full
phase-space density of the bunch, a prohibitively fine effective grid resolution would be
required. If at all, studying optical-scale modulations is therefore only possible using
simplified models, such as the aforementioned long-bunch approximation, which employs
periodic continuation of the phase-space density. Figure 6.16 shows the numerical linear
gain curves calculated using SelaV1D for both working points and three different values of
the initial energy spread σp. The smallest considered energy spread of 3 keV corresponds
to the value that can expected from the FLASH gun [102]. Energy spreads of 5 keV and
7 keV are well achievable with the laser-heater setup, requiring only a fraction of the
maximum available laser-pulse energy [101,103]. For the unperturbed initial phase-space
density, a bi-variate Gaussian distribution was chosen.

It can be seen that at WP2, the microbunching gain is approximately four times
smaller compared to WP1, independent on the initial energy spread. Between the two
working points, the locations of the maxima are comparable, with WP2 showing only a
small shift towards longer wavelengths. Maxima occur at final wavelengths of approxi-
mately 8µm, 11 µm and 15 µm, for 3 keV, 5 keV and 7 keV energy spread, respectively.
The results for the 3 keV case are consistent with experimental observations obtained at
the pre-upgrade FLASH lattice [104]. At WP2, the microbunching instability is com-
pletely suppressed at the highest considered laser heater setting of 7 keV.

These results show that the microbunching instability can be successfully suppressed
using intermediate settings of the laser heater, in conjunction with a well-chosen com-
pression working point. It has to be kept in mind when interpreting these results that
increasing the initial energy spread as well as choosing a larger total compression factor
leads to an increase of the final energy spread of the bunch. As WP2 generates a total
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Figure 6.16: Numerical linear gain functions obtained with SelaV1D, for two compression
working points of the FLASH2020+ lattice and multiple values of the initial bunch energy
spread σp. The perturbation amplitude is A “ 10´4.

compression factor of C “ 25, an initial energy spread of 7 keV will result in an final
energy spread of at least 175 keV, even without taking into account collective effects,
while the smaller compression factor of WP1, C “ 16, would result in a smaller lower
bound for the final energy spread, namely 112 keV. It is well-known that the FEL process
requires bunches with sufficiently small energy spread. At the same time, an excessive
amount of microbunching can severely degrade the FEL performance. It is therefore to
be expected that optimal FEL performance is achieved at an intermediate final energy
spread which is large enough to sufficiently suppress the microbunching instability but
small enough to drive the FEL instability.

6.4.4.1 Two-Parametric Gain Functions

In the definition of the gain function in Equation (6.4.1), the natural compression of
the initial modulation wavelength is accounted for by scaling of the arguments of the
involved charge-density spectra by the known compression factor C of the lattice. An
even more revealing way to quantify the impact of the microbunching instability on
the charge-density spectrum is to keep this scaling factor as a free parameter – instead
of fixing it to the theoretical compression factor. The resulting two-parametric gain
function GAph, kq then describes the contribution of an initial modulation at the initial
wavenumber k to the amplitude of the final charge-density modulation at the multiple
hk of the initial wavenumber.

Figures 6.17a and 6.17b show plots of the two-parametric gain functions for the two
working points, respectively. In this case, the perturbation parameter was chosen small
enough, A “ 10´4, to keep the instability in the linear regime. It can be seen that the
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maxima of the gain function occur at the multiples h « 16 “ CWP1 and h « 25 “ CWP2

of the initial wavelength, respectively, which corresponds to the compression factors of
the two working points. The broadening of the peaks in the h-direction is a result of the
finite support of the charge density. With respect to the final modulation wavelength, the
gain maxima occur at λmax,WP1 « 130µm and λmax,WP2 « 200µm, respectively. Both
correspond to an initial modulation wavelength of λmax,WP1{CWP1 « λmax,WP2{CWP2 «
8µm, which is consistent with the results of the one-parametric gain functions.

By increasing the perturbation parameter, non-linear effects of the instability can be
studied. Figures 6.17c and 6.17d show the two-parametric gain functions for A “ 10´2.
It can be seen that additional gain-peaks appear around multiples of the compression
factors of the respective working points, namely h « 16, 32, 48 for WP1 and h « 25, 50 for
WP2. These peaks quantify the contributions to the higher harmonics of the compressed
initial perturbation wavelength. In addition, it can be seen that the wavelength of
maximum gain is shifted towards longer wavelengths. For WP1, the maximum gain
at the fundamental now occurs at λmax,WP1 « 230µm and for WP2 at λmax,WP2 «
250µm, which correspond to initial modulation wavelengths of approximately 14µm
and 11µm, respectively. We note that while in the linear regime, the initial modulation
wavelengths that results in the maximum microbunching gain were the same for both
working points, in the non-linear regime they differ. The shift towards longer wavelengths
can be explained by the fact that the larger density modulation amplitude results in
large energy modulation amplitudes induced by the LSC forces, which in turn lead to a
stronger overfolding of the modulations so that modulations at smaller wavelengths are
more likely to be suppressed. As a result, maximum gain occurs at larger wavelengths.
Stronger overfolding also explains the overall reduced gain values, compared to the linear
case.

6.4.5 Shot-Noise Simulations

Until now, the microbunching instability was investigated by modulating the initial
charge density at a single wavelength and analyzing the resulting amplification of the
modulation amplitude. This approach yields gain functions which give us a good picture
of the wavelength regions in which modulations are most significantly amplified by the
microbunching instability. However, in order to determine the level of microbunching
that is to be expected for a given bunch it is necessary to compare the gain function
with the spectrum of the density inhomogeneities that are actually present in the bunch,
which we will call the noise spectrum. After all, it could be that the gain function peaks
in a wavelength region which is well outside of the noise-spectrum bandwidth of the
bunches under consideration. In that case, even if the gain function features a large
peak, the observed level of microbunching will be small, as the bunch does not contain
inhomogeneities that could actually be amplified by the microbunching instability, no
matter how large the gain is.

Naturally, the question arises what causes the initial inhomogeneities in the charge
density of a bunch. While it is conceivable that one might naively suspect modulations
of the intensity of the photo-cathode laser, or even the intricacies of the emission process
at the cathode as potential sources of the inhomogeneities, these can typically be ruled
out if a small-bandwidth laser system and a slow-response-time cathode material is
used [105].

A source of inhomogeneity that undoubtedly is at play results from the circumstance
that an electron bunch is in fact an ensemble of single particles and as such is inherently
inhomogeneous. Inhomogeneities of the charge density that arise from this particulate
nature of the bunch are referred to as shot noise or Poisson noise [106]. It becomes
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Figure 6.17: Two-parametric gain functions for two compression working points and
two values of the perturbation amplitude A.
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Figure 6.18: Charge-density spectra resulting from shot noise for a) WP1 and b) WP2,
normalized to the mean charge density. Solid lines show the mean value of 16 different
realizations of the initial shot noise and filled areas depict their standard deviations.
The form factor of an unperturbed bunch has been subtracted.

apparent that the noise spectrum of shot noise is wavelength independent. As in this
case modulations on all frequencies are present in the bunch with the same amplitude,
the gain function is indeed a good approximation of the shape of the expected final
microbunching spectrum.

In particle-tracking simulations, shot noise is inherently included as the bunch is
actually represented as a particle ensemble. However, as in a simulation typically less
particles are included than present in the physical bunch, care has to be taken to ensure
that the shot-noise amplitude of the simulated bunch matches that of a bunch with the
actual number of particles. In semi-Lagrangian simulation codes, such as SelaV1D, shot
noise is not automatically present, as a bunch is represented by a smooth numerical
representation of the phase-space density, instead of single particles. To be able to study
the microbunching amplification of shot noise, a routine was implemented in SelaV1D

that allows to add noise to an otherwise smooth phase-space density, by adding ap-
propriately distributed random values to the grid samples, as described in Section 6.2.5.
Figures 6.18a and 6.18b show the charge density spectra after the second bunch compres-
sion chicane of bunches that have been seeded this way for WP1 and WP2, respectively.
Again, multiple values of the initial energy spread σp have been studied to investigate
the efficacy of the laser heater. It can be seen that the shot-noise spectra are very much
comparable to the gain functions shown in Figure 6.16 with respect to the location and
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width of their peaks, as well as the relative reduction of the maximum with increasing
energy spread. This good agreement with the linear gain function indicates that at the
considered working points the magnitude of the shot-noise induced inhomogeneities is
small enough to keep the microbunching instability in the linear regime.

In Figure 6.19, plots of the central parts of the phase-space densities after the second
bunch compression chicane are shown for the different working points and initial energy
spreads. These plots illustrate the fact that a reduction of the microbunching amplitude
can only be achieved by paying the price of an increased final energy spread.

6.4.6 Cross-Comparison of the Shot-Noise Results

As part of the start-to-end simulation efforts for the FLASH2020+ project [107, 108],
simulations with the particle-tracking code IMPACT-Z [109] were conducted [110]. In
IMPACT-Z, a variety of collective effects is implemented, in particular a 3D model of the
space-charge forces, a 1D model of CSR effects based on references [75, 76], and cavity
wakefields. This gave the opportunity to compare SelaV1D with a well-tried code with
respect to the microbunching instability. Both codes were set up with the same lattice
and the simulation was started after the first cavity of the first RF-module, again in order
to avoid simulating the low-energy gun region. As the initial condition of the longitudinal
phase-space density a bi-variate Gaussian distribution with σp “ 3 keV was chosen, with
an additional chirp equivalent to the linearized kick of the first cavity. For the IMPACT-
Z simulation, the transverse distribution was generated based on the theoretical optical
function at that location. The number of particles used in the IMPACT-Z simulation
was chosen to 620 million, which corresponds to a quarter of the particles present in a
bunch with a charge of 400 pC. It was assumed that this ratio between simulated and
physical particles is small enough to adequately reflect the shot noise.

Figure 6.20 shows a comparison of the phase-space densities after the second bunch
compressor calculated by the respective codes for working point WP1. It can be seen
from Figures 6.20a and 6.20c that the large-scale shape of the phase-space densities and
the charge density distributions differs only slightly between the codes, predominantly in
the head and tail parts of the bunch. For the IMPACT-Z simulation, the rf-settings had
to be tweaked slightly in order to produce the correct final peak current, which indicates
that the model IMPACT-Z uses for the longitudinal single-particle beam dynamics is
not completely compatible to that implemented in SelaV1D. Also, it has to be noted
that while in the IMPACT-Z simulation all implemented collective-effects were enabled,
in the SelaV1D simulation only LSC effects were included. With these differences in
mind, the agreement of the small-scale bunch shape between the two codes is more than
satisfactory. Figures 6.20b and 6.20d show close-ups of parts of the phase-space density
around the center of the bunch, which show that also the form of the microbunching
structures agrees well between the codes.

In Figure 6.21, a comparison of the normalized charge density spectra after the second
bunch compressor predicted by SelaV1D and IMPACT-Z is shown. As is is not possible
to simulate an unperturbed bunch with IMPACT-Z due to the unavoidable shot-noise,
in contrast to Figure 6.18 the form factor of the unperturbed bunch was not subtracted
from the spectra and is therefore visible in this plot. It is apparent that the wavelength
region and amplitude of the contributions of the microbunching instability predicted
by the two codes agree very well. The aforementioned differences in the charge-density
distribution are reflected in the form factors.

We see that the results produced by SelaV1D and IMPACT-Z agree in general very
well. However, much larger differences lie in the run times of the two codes. An IMPACT-
Z run with the aforementioned number of simulated particles takes more than a day wall-
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Figure 6.19: Plots of the central parts of the phase-space densities obtained from
SelaV1D after the second bunch compression chicane, depicting shot-noise inhomo-
geneities amplified by the microbunching instability for two compression working points
and multiple values of the initial energy spread σp.
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Figure 6.20: Phase-space densities and particle distribution resulting from a),b) SelaV1D

and c),d) IMPACT-Z simulations, respectively, and the corresponding charge densities.
In c) every 500.000th and in d) every 10.000th of the 620 million simulated particles is
plotted in order to keep the graphic from saturating.

158



0

1

2

3

4

5

0.1 1 10 100 1000

form factor

microbunching

SelaV
IMPACT-Z

am
p
li
tu
d
e
/
m
ea
n
/
%

final wavelength / µm

Figure 6.21: Comparison of charge-density spectra after the second bunch compressor
resulting from simulations with SelaV1D and IMPACT-Z.

clock time on a computer cluster with 64 CPUs [110]. A SelaV1D run at an appropriate
resolution takes less than 10 minutes on a personal computer with 4 cores.
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7 Summary

In this work, the microbunching instability occurring in free-electron laser injectors was
investigated via analytical as well as numerical methods.

On the analytical side, a perturbation theory for the microbunching instability was
developed based on the formalism of collective Perron–Frobenius operators, which are the
propagation operators of a phase-space density whose time-evolution is determined by a
kinetic equation similar to Liouville’s equation, which preserves the Lebesque measure
and is sufficiently regular. By expanding the collective Perron–Frobenius operators with
respect to their dependence on the initial phase-space density by means of their Fréchet
derivatives, a Fréchet–Taylor series representation of the Perron–Frobenius operator was
obtained. Using the expanded form of the operator, a perturbation series for a propa-
gated phase-space density was derived. For a certain class of collective Perron–Frobenius
operators, namely those that fulfill a homomorphy criterion, the Fréchet derivatives were
derived explicitly. These findings were used to study the amplification of an initial charge
density modulation due to the microbunching instability in a bunch compression stage.
Considering a modulation on a single wavelength, this approach allowed not only to
derive the linear gain function, but also the non-linear contributions which result in
the generation of higher harmonics of the initial modulation of the charge density. Fur-
ther, the approach allowed to study initial perturbations that consist of two modulations
on two different wavelengths. It was shown that in this case wave mixing occurs. In
particular, the second order perturbation term contains terms with a periodicity corre-
sponding to the sum and the difference of the initial perturbation. A general approach
to extend the perturbation theory to multiple microbunching stages was shown. For two
microbunching stages, an explicit expression for the linear microbunching gain function
was derived. By fixing the energy distribution function of the bunch and the collective
impedance function, closed-form expressions of the terms of the phase-space density per-
turbation series and the associated charge densities were derived up to arbitrary order.
These expressions were parameterized with respect to a set of normalized parameters,
describing the energy amplitude and shearing of a microbunching modulation, which
allowed to describe the gain process in a general manner. It further allowed to introduce
universal normalized gain functions, which where derived explicitly up to third order.

A particularly insightful representation of the linear longitudinal single-particle beam
dynamics in one and more bunch compression stages was derived in the form of a sym-
plectic LDU decomposition. This finding crucially facilitated the application of the
aforementioned perturbation theory, as it allowed to treat the system in a decorrelated
frame.

On the numerical side, the development of the semi-Lagrangian Vlasov simulation
code SelaV1D was presented. A distinguishing feature of SelaV1D is that it allows to rep-
resent the exotic longitudinal phase-space densities that are prevalent in FEL injectors
– characterized by a strong non-linear correlation between the energy deviation and the
longitudinal position – numerically efficient by employing tree-based domain decomposi-
tion. With SelaV1D it is therefore possible to simulate the whole phase-space density of a
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bunch using the semi-Lagrangian approach, which – in contrast to particle-tracking ap-
proaches – is free of artificial shot-noise. The absence of this class of numerical artifacts
allows a precise numerical analysis of the microbunching instability, as the inhomogeneity
of the initial phase-space density can be specified precisely, without unwanted contribu-
tions resulting from imperfections of the numerical representation. The basic working
principle of SelaV1D was described as well as key features that facilitate its use for the
simulation of collective beam dynamics in accelerator beamlines.

A simplified model of the microbunching process, the discrete-time long-bunch model,
was simulated using SelaV1D and the results compared to analytical results obtained from
the perturbation theory, with which they agreed excellently.

SelaV1D was further used to simulate two compression working points of FLASH after
the FLASH2020+ upgrade. A primary goal of these simulation was to determine to which
degree the microbunching instability could be suppressed by the laser heater that is part
of the upgrade. These simulations where conducted with the full phase-space density and
a more refined model of the beam dynamics. From these simulation results, numerical
gain functions were calculated and compared between the two working points. As an
extension of the linear one-parametric gain function, the concept of a two-parametric gain
function was introduced, which allows to quantify the generation of higher harmonics
in the non-linear case. Further, the emergence of the microbunching instability from
shot-noise was investigated. Shot-noise spectra and phase-space features predicted by
the semi-Lagrangian code SelaV1D agree well with simulation results from a particle-
tracking code. In general, it was shown that SelaV1D is a reliable tool to investigate
the mircobunching instability, that was successfully used to aid the design of bunch
compression schemes for the FLASH2020+ upgrade project. Overall, the results indicate
that the microbunching instability at FLASH after the FLASH2020+ upgrade can be
successfully suppressed, even with intermediate laser heating, if a suitable compression
working point is chosen. Investigating the impact of such microbunching mitigation
efforts on the FEL performance was, however, beyond the scope of this work.

For the aforementioned compression working points it is mandatory to compress the
bunch as linear as possible. To that end, an algorithm was developed to determine
appropriate rf-settings which provide linear bunch compression.

Overall, in this thesis two powerful tool sets, one analytical and one numerical, were
developed to determine the impact of the microbunching instability on the beam quality
in free-electron laser injectors. By applying both tool sets, a better understanding of
the microbunching instability – in particular with respect to non-linear contributions,
the formation of higher harmonics, and its behaviour in multiple compression stages –
was obtained and microbunching mitigation schemes for the FLASH2020+ project were
investigated.
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A Coordinates for a Type of Curl-Free

Potentials

In addition to the regularly used coordinates outlined in Section 2.6.6, we want to intro-
duce another set of coordinates. The distinguishing feature of these coordinates is that
the transverse and electric potentials are included in the coordinates. As a result, the
Hamiltonian is independent on the potentials and only a dependence on the longitudinal
vector potential remains. These coordinates are defined by

z̃ ”

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

x̃

p̃x

ỹ

p̃y

τ̃

δ̃

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

”

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

Qx

Px´eAx

P0

Qy

Py´eAy

P0

ct0psq ´ ct

?
pH´eφq2´m2c4

H´eφ

1
c

?
pH´eφq2´m2c4

P0
´ 1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

. (A.0.1)

In the following, it is shown that this indeed defines a canonical transformation if the
potentials fulfill a certain condition. To this end we introduce the intermediate coordi-
nates

ẑ ”

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

Q̂x

P̂x

Q̂y

P̂y

Ĥ

t̂

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‚

“

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

Qx

Px ´ eAx

Qy
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a
pH ´ eφq2 ´m2c4

t

?
pH´eφq2´m2c4

H´eφ

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‚

. (A.0.2)

Defining the auxiliary symbol ∆ ” H´eφ?
pH´eφq2´m2c4

, the Jacobian M ” Bẑi{Bzj of the

coordinate transformation (A.0.2) is given by

M “

¨
˚̊
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0

´e BAx

BQx
1 ´e BAx
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0 0 ´eBAx
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´e BAy
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1 0 ´eBAy
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∆ 0 ´e Bφ
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Bt∆

etp∆´1´∆q
H´eφ
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BQx

0
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BQy
0
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H´eφ

Bφ
Bt ` 1

∆

˛
‹‹‹‹‹‹‹‹‚

.

(A.0.3)
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For (A.0.2) to be a canonical transformation,M has to preserve the symplectic structure
MTJ6M “ J6, where J6 ” J2 ‘ J2 ‘ J2 and

J2 ”
ˆ

0 1
´1 0

˙
. (A.0.4)

After some calculation, it can be seen that

MTJ6M “

¨
˚̊
˚̊
˚̊
˚̊
˚̋

0 1 ´e
´
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¯
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e
´
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BQx

¯
0 0 1 0 ´e

´
Bφ

BQy
` BAy

Bt

¯

0 0 ´1 0 0 0
0 0 0 0 0 1

e
´

Bφ
BQx

` BAx

Bt

¯
0 e

´
Bφ

BQy
` BAy

Bt

¯
0 ´1 0

˛
‹‹‹‹‹‹‹‹‹‚

.

(A.0.5)
Therefore, the transformation (A.0.2) is symplectic if the potentials fulfill the conditions

BAx

BQy
“ BAy

BQx
,

Bφ
BQx

“ ´BAx

Bt ,
Bφ

BQy
“ ´BAy

Bt . (A.0.6)

Alternatively, this condition can also be written more concisely in the form of the curl
of the vector field p´φ,Ax, Ayq with respect to the coordinates pt,Qx, Qyq:

¨
˚̊
˝

B
Bt

B
BQx

B
BQy

˛
‹‹‚ˆ

¨
˚̊
˝

´φ
Ax

Ay

˛
‹‹‚“ 0. (A.0.7)

In a next step, the coordinates ẑ are scaled via the improper scaling transformation

S ”
ˆ
1 0
0 1

P0

˙
‘
ˆ
1 0
0 1

P0

˙
‘
ˆ

0 ´c
1

cP0
0

˙
, (A.0.8)

which yields another set of intermediate coordinates

z̄ ”

¨
˚̊
˚̊
˚̊
˝

Q̄x

P̄x

Q̄y

P̄y

τ̄

δ̄

˛
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Q̂y
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. (A.0.9)

We note that S is symplectic with multiplier P´1
0 in the sense that

STJ6S “ P´1
0 J6. (A.0.10)

Hence, also the Hamiltonian has to be scaled with a factor P´1
0 when applying the

transformation S

K̄ “ K

P0

. (A.0.11)

164



To arrive at the final coordinates A.0.1, we subtract unity from δ̄ and add the time
coordinate ct0psq of the reference particle to τ̄

z̃ ”

¨
˚̊
˚̊
˚̊
˝

x̃

p̃x
ỹ

p̃y
τ̃

δ̃

˛
‹‹‹‹‹‹‚

”

¨
˚̊
˚̊
˚̊
˝

Q̄x

P̄x

Q̄y

P̄y

τ̄ ` ct0psq
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˛
‹‹‹‹‹‹‚
. (A.0.12)

This shows that the coordinates z defined in (2.6.25) are connected to the coordinates
z̃, defined in (A.0.2), via a symplectic transformation, if the condition (A.0.6) holds. In
these new coordinates the Hamiltonian reads

K̃ “ px̃κ ´ 1q
b`

δ̃ ` 1
˘2 ´ p̃2x ´ p̃2y ´ eAs

P0

. (A.0.13)
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B SelaV1D Input Files for Discrete-Time

Long-Bunch Model

In the following, input files for SelaV1D are presented which implement the discrete-time
long-bunch model as shown in section 6.3. They also serve as an example for the syntax
used by SelaV1D’s parser. In this example the parameters to be used in the simulation
are defined in the file example-a.inp. At the end of the parameter file, the actual
simulation is started by including the file DTLB.inp, which implements the model and
loops over the perturbation wavelengths.

example-a.inp
name="example-a";

// Beam Parameters

I0 = 25; // Initial Current [A]

SIGE = 5e3; // Inital Energy Spread [eV]

// First Linac

E1 = 100e6; // Characteristic Energy [eV]

L1 = 25; // Length [m]

BS1 = 0.3e-3; // Characteristic Beamsize [m]

// First BC

C1 = 4.00; // Compression Factor [1]

R561 = 140e-3; // Chicane Strength [m]

EBC1 = 145e6; // Energy [eV]

// Second Linac

E2 = 350e6; // Characteristic Energy [eV]

L2 = 50; // Length [m]

BS2 = 0.2e-3; // Characteristic Beamsize [m]

// Second BC

C2 = 8; // Compression Factor [1]

R562 = 70e-3; // Chicane Strength [m]

EBC2 = 550e6; // Energy [eV]

// start simulation

include("DTLB.inp");

DTLB.inp

// Make base directory

mkdir("output"); chdir("output"); mkdir(name); chdir(name); basedir=getcwd();

NEXP:=4; NSTEPS:=64; LAMBDAMIN:=1e-6; LAMBDAMAX:=10e-4;

LAMBDAS:=linspace(LAMBDAMIN,LAMBDAMAX,NSTEPS);

A0 := 1e-3;

SAVEGRIDS:=0;
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i=0;

for LAMBDA in LAMBDAS {

// Set up directory

chdir(basedir);

dir=strcat(basedir,format("/%04g/",i));

mkdir(dir); chdir(dir);

i=i+1;

QSIM = I0 * LAMBDA/2.9979246e+08;

limits=[-LAMBDA/2,-SIGE*8,LAMBDA/2,SIGE*8];

psi = psd_bump(width=2*LAMBDA, sig_p=SIGE, weight=QSIM,

limits=limits, dropoff=0.1*LAMBDA, topology=1, nexp=NEXP);

modify(psi,format("psi*(1+%e*cos(q*2*pi/%e))",A0,LAMBDA));

normalize(psi);

write_localmoments(psi,"INI-localmoments.dat",1);

// LSC1

LSC1 = map_spacecharge(psi,

beamsize=BS1, energy=E1,length=L1,npad=1,file="LSC1-field.dat");

// BC1

BC1 = map_compose(

map_driftl(C1*R561/EBC1),

map_hyperbolic(1./C1));

STAGE1 = map_compose(LSC1,BC1);

limits=[limits[0]/C1,limits[1]*C1,limits[2]/C1,limits[3]*C1];

psi = propagate(psi,STAGE1,limits=limits);

write_localmoments(psi,"DBC1-localmoments.dat",1);

pvar_DBC1 = variance(psi)[3];

if(SAVEGRIDS) {

write_grid(psi,format("DBC1-grid-%e.dat",LAMBDA),npts=[256,256]);

};

// LSC2

LSC2 = map_spacecharge(psi,

beamsize=BS2, energy=E2, length=L2, npad=1, file="LSC2-field.dat");

// BC2

BC2 = map_compose(

map_driftl(C2*R562/EBC2),

map_hyperbolic(1./C2));

STAGE2 = map_compose(LSC2,BC2);

limits=[limits[0]/C2,limits[1]*C2,limits[2]/C2,limits[3]*C2];

psi = propagate(psi,STAGE2,limits=limits);

write_localmoments(psi,"DBC2-localmoments.dat",1);

pvar_DBC2 = variance(psi)[3];

{ who(); } > "vars.dat";

};
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C Phase-Space Linearization Script

The following is a Python implementation of the phase-space linearization approach
described in Section 3.6.

rfcalc.py
import numpy as np

# functions for chicane dispersion coefficients

def F(m,a,b,lamb):

if(m==0):

return (lamb**2-1)**(-a) * lamb**b

else:

return -2*a*F(m-1, a+1, b+1, lamb) + b*F(m-1, a, b-1, lamb)

def dsB(lB, angle, n):

lamb = 1./sin(angle)

if(n==0):

return lB * lamb * asin(1./lamb)

elif(n==1):

return lB * lamb * ( asin(1./lamb) - 1./sqrt(lamb**2-1))

else:

return lB * lamb**n * F(n-2, 3./2., -1., lamb)

def dsD(lD, angle, n):

lamb = 1./sin(angle)

return lD * lamb**n * F(n, 1./2., 1, lamb)

def chicanecoeff(lB,lD,angle,n):

return 4*dsB(lB, angle, n) + 2*dsD(lD, angle, n)

# phase-space linearization functions

def solve_rf(b, k):

E, h, _, _ = b

z = E - 1j * h/k

return z

def solve_rf_doublett(b, k1, k2):

def coefs(k1,k2):

return np.array([ (k2**2), -1j*k2**2/k1, 1, -1j/k1 ])/(k2**2-k1**2)

z1 = b @ coefs(k1,k2)

z2 = b @ coefs(k2,k1)

return np.array([z1,z2])

def RF(z, k):

zbar = z.conjugate()

dE = z + zbar

dh = 1j*k**1 * (z - zbar)

dhp = -k**2 * (z + zbar)

dhpp = -1j*k**3 * (z - zbar)

return np.real(np.array([dE,dh,dhp,dhpp])/2.)
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def BC(b0, R56, R566, R5666):

f, fp, fpp, fppp = b0

bp = R56/f; bpp = R566/f**2; bppp = R5666/f**3

C = 1./(1.+fp*bp); Cp = -C**3 * (fpp*bp + fp**2*bpp)

Cpp = 3*Cp**2/C - C**4 * (fppp*bp + 3*fp*fpp*bpp + fp**3*bppp)

g = f; gp = C*fp; gpp = Cp*fp + C**2*fpp

gppp = Cpp*fp + 3*C*Cp*fpp + C**3*fppp

return np.array([g, gp, gpp, gppp])

def rfcalc( stage1, stage2, freqh, b0, nlf=(0.,0.)):

# unpack compression stage (cavity & chicane)parameters

E1, freq1, C1, lb1, ld1, angle1 = stage1

E2, freq2, C2, lb2, ld2, angle2 = stage2

hpf, hppf = nlf # unpack final non-linearities

# constants

c = 299792458; kh =2*np.pi*freqh/c; k1 = 2*np.pi*freq1/c; k2 = 2*np.pi*freq2/c

# calculate chicane dispersion coefficients

R561, R5661, R56661 = \

[-chicanecoeff(lb1, ld1, angle1, n) for n in [1,2,3]]

R562, R5662, R56662 = \

[-chicanecoeff(lb2, ld2, angle2, n) for n in [1,2,3]]

# determine required chirps before chicances

h1 = (1./C1-1)/R561 * E1; h2 = (1./C2-1)/R562 * E2

# propagate final beam coefs back through BC2

b2 = [E2, C2*h2, hpf, hppf]

b2hat = BC(b2, -R562, -R5662, -R56662)

# complex amplitude of second cavity

b1 = np.array([E1, h1*C1, 0, 0])

z2 = solve_rf(b2hat-b1, k2)

b1 = b2hat - RF(z2, k2)

# propagate b1 back through first chicane

b1hat = BC(b1, -R561, -R5661, -R56661)

# solve for settings of first and harmonic cavity

z1, zh = solve_rf_doublett(b1hat-np.array(b0), k1, kh)

return (zh, z1, z2)

if __name__ == ’__main__’:

# compression stage parameters

# E[eV] freq[Hz] C lb[m] ld[m] angle[rad]

stage1 = ( 146e6, 1.3e9, 4.0, 0.5000, 0.5000, 16*np.pi/180. )

stage2 = ( 550e6, 1.3e9, 4.0, 0.4463, 4.4300, 5*np.pi/180. )

freqh = 3.9e9

b0 = (5.6e6, 1.46283e+07, -1.76782e+09, 5.03274e+11) # initial curvature

nlf= (-85.4186*1e12, -843.043*1e15) # final non-linearities

sol = rfcalc( stage1, stage2, freqh, b0, nlf )

for z in sol:

print(f’{np.abs(z)/1e6:8.3f} {np.angle(z)/np.pi*180:7.2f}’)
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